Abstract:
In a magnetization device, while an annular magnetic body including plural rows of annular un-magnetized magnetic encoder tracks which are arranged adjacent to each other and integrated therewith is rotated, magnetization is performed, thereby providing a magnetic encoder. The magnetization device includes: a magnetizing yoke including a pair of opposed end portions opposed to each other across a magnetic gap; an exciting coil wound on the magnetizing yoke; a magnetization power source supplying a magnetizing current to the exciting coil to pass magnetic flux between the opposed end portions; and a magnetic shield which is provided to the magnetizing yoke and shields flow of the magnetic flux to the rows of magnetic encoder tracks other than a magnetization target.
Abstract:
An in-wheel motor drive assembly (11) includes a motor unit that drivingly rotates a motor-side rotating member, a speed reduction unit that reduces the rotational speed of the motor-side rotating member and transmits the reduced rotation to a wheel-side rotating member, a wheel hub (26) that is fixedly coupled to the wheel-side rotating member, a wheel hub bearing that rotatably supports the wheel hub (26), a casing (12) that covers the motor unit, the speed reduction unit, and the wheel hub bearing, a plurality of sensors (43) that are mounted on the casing (12) and capable of detecting strain generated in the casing (12), and a signal processor (46) that calculates load imposed on a wheel on the basis of strain signals output from the sensors (43).
Abstract:
A condition monitoring system includes a vibration sensor for measuring a vibration waveform of a bearing in a wind turbine generation apparatus and a data processor for diagnosing abnormality of the bearing. In the data processor, an evaluation value computing unit time-sequentially computes an evaluation value that characterizes an effective value of vibration waveform data output from the vibration sensor within a certain time. A diagnosis unit diagnoses abnormality of the bearing based on transition of temporal change of the evaluation value. The evaluation value computing unit computes the minimum value of the effective values of vibration waveform data within a certain time, as the evaluation value.
Abstract:
A condition monitoring apparatus which monitors a condition of equipment including a rotor includes a storage and a calculator. The storage stores a plurality of results obtained from a plurality of divided data strings, respectively, resulting from division of a data string obtained by sampling at a regular time interval of signals from sensors provided in the equipment. The calculator estimates a plurality of rotation speeds corresponding to the plurality of divided data strings from the plurality of results accumulated in the storage, respectively, corrects the plurality of divided data strings based on the plurality of rotation speeds, respectively, and generates a corrected data string by combining the plurality of corrected divided data strings. A condition monitoring apparatus capable of accurately analyzing data obtained from the sensors while increase in cost is suppressed and influence by variation in rotation is lessened is thus provided.
Abstract:
An abnormality diagnosis device, which is capable of detecting that a vibration sensor is detached from a measurement object, includes a vibration sensor and a control device. The vibration sensor is attached to a measurement object, and measures vibration of the measurement object. The control device determines whether or not the vibration sensor is detached from the measurement object, based on data received from the vibration sensor. The control device calculates a first partial overall value in a first frequency band. The control device calculates a second partial overall value in a second frequency band which is higher than the first frequency band. The control device calculates an index value having a correlation with a ratio between the first partial overall value and the second partial overall value. The control device determines whether or not the vibration sensor is detached from the measurement object, based on the index value.
Abstract:
A sensor assembly is sandwiched together with a rubber material mixed with a vulcanizing agent in a mold assembly including an upper mold and a lower mold. The upper and lower molds, while completely sandwiching the sensor assembly, are heated for a predetermined length of time, and a pressure is then applied to the sensor assembly to complete a compressive molding.
Abstract:
A wear amount detection device to detect that a tire is in a worn state, during running, without a special sensor. The device includes a rotation sensor detecting rotation of a wheel to measure a speed of an automobile; a signal processing extracting rotation speed fluctuations synchronized with rotation, from a rotation signal detected by the rotation sensor, and obtain a rotation speed fluctuation pattern synchronized with rotation, from rotation speed fluctuations over a plurality of rotations; and a wear state determination configured to obtain, from the obtained pattern, a value of a component induced by a characteristic embodied in a tire of the wheel, the value varying in accordance with a wear state of the tire, to estimate a wear state of the tire, and to output the state.
Abstract:
A magnetic encoder device (3) of the present invention includes a base portion (33) having a mounting surface (33b) for mounting to a rotary shaft (2), a cored bar (35) fitted and fixed over the base portion (33), and a double-row magnetic encoder track (30) formed on the cored bar (35). Through movement of each of magnetic poles of the magnetic encoder track (30) over a region opposed to a magnetic sensor (4), an angle of the rotating rotary shaft is detected. The base portion (33) is formed of a sintered metal, and the mounting surface (33b) is subjected to sizing.
Abstract:
In a magnetization device, while an annular magnetic body including plural rows of annular un-magnetized magnetic encoder tracks which are arranged adjacent to each other and integrated therewith is rotated, magnetization is performed, thereby providing a magnetic encoder. The magnetization device includes: a magnetizing yoke including a pair of opposed end portions opposed to each other across a magnetic gap; an exciting coil wound on the magnetizing yoke; a magnetization power source supplying a magnetizing current to the exciting coil to pass magnetic flux between the opposed end portions; and a magnetic shield which is provided to the magnetizing yoke and shields flow of the magnetic flux to the rows of magnetic encoder tracks other than a magnetization target.
Abstract:
At least one or more sensor for detecting a load acting on a wheel support bearing apparatus is provided in such bearing device, a signal processor for processing an output signal of those sensors to generate a signal vector and a load calculator for calculating the load, which acts on a vehicle wheel, from the signal vector, are provided. The load calculator has a function of determining the presence or absence of a predetermined state of a vehicle, which may affects a result of calculation of the load, and performing two types of calculation process appropriate to the presence or absence. The presence or absence of the predetermined state of the vehicle, which is determined by the load calculator is, for example, ON/OFF of a brake.