Abstract:
Optical MEMS scanning micro-mirror comprising:—a movable scanning micro-mirror (101) pivotally connected to a MEMS body (102) substantially surrounding the lateral sides of the micro-mirror;—an transparent prism (500, 600) substantially covering the reflection side of the micro-mirror;—wherein said prism has its outer face non-parallel to the micro-mirror neutral plane N-N, thereby providing a dual anti-speckle and anti-reflection effect, namely against parasitic light. The invention also provides the corresponding micro-projection system and method for reducing speckle.
Abstract:
A micro-projection system for projecting light on a projection surface (104), comprising: at least one coherent light source (101); optical elements (102, 108, 109) in the optical path between said coherent light source and said projection surface; said optical elements including at least one reflective member (102) actuated by a drive signal for deviating light from said light source so as to scan a projected image onto said projecting surface; said optical elements including at least one pixel displacement unit (106) for providing a displacement signal synchronized with the image scanning signal so as to reduce speckle onto said projecting surface. The corresponding method for reducing speckle is also provided.
Abstract:
A projection apparatus, comprising one or more light sources, wherein the one or more light sources are arranged to collectively provide a light signal which comprises multiple wavelengths, wherein the projection apparatus further comprises an optical filter configured to filter the light signal provided by the one or more light sources, so that two or more images may be projected simultaneously by the projection apparatus, each image being projected to a different position. There is further provided a scanning device which uses the afore-mentioned projection apparatus.
Abstract:
A mechanical micro system comprising a flexible bending beam extending along a direction, and at least one magnetic element for creating a magnetic field. The flexible beam includes: a first circuit having a first topology for generating, in response to one current flowing through the first circuit, a force having an effect on the beam at one particular place so as to cause a first vibratory mode; a second circuit having a second topology for generating, in response to one current flowing through the second circuit, a force having an effect on the beam at one particular second position so as to cause a second vibratory mode.
Abstract:
A MOS transistor with a deformable gate formed in a semiconductor substrate, including source and drain areas separated by a channel area extending in a first direction from the source to the drain and in a second direction perpendicular to the first one, a conductive gate beam placed at least above the channel area extending in the second direction between bearing points placed on the substrate on each side of the channel area, and such that the surface of the channel area is hollow and has a shape similar to that of the gate beam when said beam is in maximum deflection towards the channel area.
Abstract:
A reflective device including a movable element which has a reflective surface, wherein the movable element can oscillate about at least one oscillation axis to scan light; one or more holder elements which co-operate with the movable element to hold the movable element in a manner which will allow the movable element to oscillate about the at least one oscillation axis to scan light, wherein the one or more holder elements are configured to define a region which can receive at least a portion of the movable element as the movable element oscillates when the reflective device is mounted on a surface; a magnetic element which is secured to a fixed part of the reflective device; one or more electrically conductive means positioned on the movable element so that one or more electrically conductive means can operatively co-operate with a magnetic field provided by the magnetic element to effect oscillation of the moveable element, wherein the one or more electrically conductive means are completely embedded in the movable element. There is further provided a projection device having such a reflective device and a corresponding method of manufacturing a reflective device.
Abstract:
The present invention relates to a method of projecting a portion of an image, which is to be projected on to a display area, with improved brightness, comprising the steps of, configuring a projector such that it projects over a portion of the display area, modifying a signal which defines the pixels of the image, to provide a signal which defines pixels of a portion of the image. The present invention further relates to a corresponding device.
Abstract:
A projection device comprising, a red light source, a green light source, and a blue light source which can emit red, green and blue light respectively, a beam combiner which is configured such that it can combine light beams; a means for collimating the light emitted from the red, green and blue light sources to provide red, green and blue collimated light beams, an optical modifier means, which is arranged such that the optical modifier means can receive the red, green and blue collimated light beams, and wherein the optical modifier means is configured to modify cross sectional dimensions of the red, green and blue collimated light beams to provide red, green and blue projection beams each of which has a circular cross section, and wherein the optical modifier means is configured, and the distances between the light sources and means for collimating are set, such that the dimensions of the circular cross sections of the red, green and blue projection beams are equal at a predetermined distance from the projection device such that the spot sizes of each of the red, green and blue projection beams are equal or have predefined sport sizes at the predetermined distance from the projection device; MEMS mirror which is configured such that it can oscillate about at least one oscillation axis to scan the red, green and blue projection beams across a projection screen which is positioned at the predetermined distance from the projection device.
Abstract:
The invention relates to an electromagnetically actuated microshutter comprising: a moveable plate that can rotate about an axis, connected to a stationary frame by two arms aligned on both sides of the plate to said axis, and comprising on its periphery a conductive loop; and below the assembly formed by the stationary frame and the moveable plate, a group of magnets having distinct magnetic orientations, arranged in such a manner so as to create, in regard to the moveable plate, a lateral magnetic field, in the plane of the frame, oblique in relation to the axis of rotation.
Abstract:
According to the present invention, there is provided an optical device comprising, a plurality of light sources each operable to provide a light beam; at least one beam combiner which is operable to combine the light beams from the plurality of light sources, to provide a combined light beam; a beam splitter, which is arranged to receive the combined light beam and to split the combined light beam into a primary light beam and a secondary light beam, wherein one or more characteristics of the secondary light beam are indicative of one or more characteristics of the primary light beam, wherein the beam splitter comprises a first surface through which the primary light beam is emitted from the beam splitter and a second surface through which the secondary light beam is emitted from the beam splitter; a mirror component which comprises a mirror, wherein the mirror component is arranged such that the mirror can reflect the primary light beam which is emitted through the first surface of the beam splitter and wherein the mirror can oscillate about at least one oscillation axis to scan the primary light beam; wherein the optical device further comprises a photodiode which is configured to receive the secondary light beam and to detect one or more characteristics of the secondary light beam, wherein the photodiode is configured to be offset from being parallel to at least one of the first surface or second surface of the a beam splitter, to reduce the amount of parasitic light which is directed to the mirror. There is further provided a corresponding method of projecting an image.