摘要:
A stationary CT apparatus and a method of controlling the same. The stationary CT apparatus includes: a scanning passage; a stationary carbon nanotube X-ray source arranged around the scanning passage and comprising a plurality of ray emission focal spots; and a plurality of stationary detector modules arranged around the scanning passage and disposed opposite the X-ray source. At least some of the plurality of detector modules are arranged in a substantially L shape or a substantially Π shape when viewed in a plane intersecting the scanning passage. Reconstruction of the CT apparatus without a rotary gantry is achieved and special substances in an object under inspection is identified by optimizing design of the carbon nanotube X-ray source and the detector device. The invention ensures that the stationary gantry type CT system has a small size and a high accuracy and is particularly suitable for safety inspection of baggage.
摘要:
The present disclosure discloses a scanning imaging system, comprising a transportation apparatus, a first imaging system, and a second imaging system. A distance between a ray beam from a first ray generator of the first imaging system and a ray beam from a second ray generator of the second imaging system in the transportation direction is roughly L. A controller is configured to acquire, based on a count value of the encoding counter module, a correspondence relationship between data in a position of the inspected object in the transportation direction which is collected by the first imaging system and data in the position of the inspected object in the transportation direction which is collected by the second imaging system, wherein a difference between a count value of the encoder corresponding to the data in the position which is collected by the first imaging system and a count value of the encoder corresponding to the data in the position which is collected by the second imaging system is roughly L/D. The present disclosure can achieve alignment of the DR data image and the CT data image in a simple manner.
摘要:
A photoelectric switch for detection of an object. The photoelectric switch comprises: a light transmitter unit comprising plural light transmitters configured to emit plural light signals; a light receiver unit comprising plural optical fiber receivers in one-to-one correspondence with the plural light transmitters and configured to receive the plural light signals and to merge plural light signals, wherein an object detection area is defined between the plural light transmitters and the plural optical fiber receivers; a photoelectric conversion unit connected to the optical fiber receivers and configured to perform photoelectric conversions on the merged light signals outputted by the optical fiber receivers so as to generate an electric signal; and a control and processing unit connected to both the light transmitter unit and the photoelectric conversion unit, and configured to control and process the light signals and/or the electric signal.
摘要:
Disclosed is an encoder and encoding method for slip ring. The encoder includes: an encoding belt that is fixed to a slip ring and has a plurality of holes regularly arranged on the encoding belt; at least one pair of first sensors provided on one side of the encoding belt, wherein the first sensors of each pair generate a first sense signal and a first redundant sense signal respectively based on light emitted from the other side of the encoding belt and passing through the plurality of holes, when the encoding belt rotates with the slip ring; and at least one signal combiner connected to the at least one pair of the first sensors, and configured to combine the first sense signal and the first redundant sense signal to obtain a combined sense signal as a first encoded signal. With embodiments of the present invention, a redundant signal is provided by using a redundant sensor, and it is possible to avoid interference of foreign substance, improve stability of encoded signals and ensure normal operation of equipment.
摘要:
The present invention discloses a CT security inspection system for baggage. The CT security inspection system comprises a scanning passage through which a baggage enters and exits the CT security inspection system for baggage, a X-ray source provided at one side of the scanning passage, and, a gantry provided at an opposite side of the scanning passage, and on which a plurality of detector units are mounted. In each of the detector units, a vertex point of at least one detector unit is positioned in a circular arc with its center at a center of the scanning passage, and the detector units are arranged successively. All the detector crystal receiving faces of the plurality of detector units are within a scope of radiating ray beams with its center at a target of the X-ray source. In each of the detector units, a connection line between a midpoint of at least one of the detector crystal receiving faces and the target of the X-ray source is normal to the corresponding detector crystal receiving face.
摘要:
A photoelectric switch for detection of an object. The photoelectric switch comprises: a light transmitter unit comprising plural light transmitters configured to emit plural light signals; a light receiver unit comprising plural optical fiber receivers in one-to-one correspondence with the plural light transmitters and configured to receive the plural light signals and to merge plural light signals, wherein an object detection area is defined between the plural light transmitters and the plural optical fiber receivers; a photoelectric conversion unit connected to the optical fiber receivers and configured to perform photoelectric conversions on the merged light signals outputted by the optical fiber receivers so as to generate an electric signal; and a control and processing unit connected to both the light transmitter unit and the photoelectric conversion unit, and configured to control and process the light signals and/or the electric signal.
摘要:
The present disclosure provides a distributed amplifier, including: a drain transmission line; a gate transmission line; GFETs, in which sources of the graphene field-effect transistors are respectively grounded; gates of the graphene field-effect transistors respectively connected with a plurality of first shunt capacitors which are grounded; the gate transmission line is connected with a plurality of first nodes respectively between the gates of the graphene field-effect transistors and the plurality of first shunt capacitors, having a plurality of first inductors respectively between each two first nodes; drains of the graphene field-effect transistors respectively connected with a plurality of second shunt capacitors which are grounded; the drain transmission line is connected with a plurality of second nodes respectively between the drains of the graphene field-effect transistors and the plurality of second shunt capacitors, having a plurality of second inductors respectively between each two second nodes.