Abstract:
A laser surgical method for performing a corneal incision while maintaining iris exposure below a predetermined exposure limit includes: determining an initial iris exposure based on an initial treatment scan, determining whether the initial iris exposure is less than the predetermined exposure limit; generating a revised treatment scan comprising one or more treatment scan modifying elements when the initial iris exposure is greater than the predetermined exposure limit, and scanning the focal zone of a pulsed laser beam according to the revised treatment scan, thereby performing the corneal incision, wherein the one or more treatment scan modifying elements causes the iris exposure to be smaller than the predetermined exposure limit.
Abstract:
A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.
Abstract:
A method of altering a refractive property of a crosslinked acrylic polymer material by irradiating the material with a high energy pulsed laser beam to change its refractive index. The method is used to alter the refractive property, and hence the optical power, of an implantable intraocular lens after implantation in the patient's eye. In some examples, the wavelength of the laser beam is in the far red and near IR range and the light is absorbed by the crosslinked acrylic polymer via two-photon absorption at high laser pulse energy. The method also includes designing laser beam scan patterns that compensate for effects of multiphone absorption such as a shift in the depth of the laser pulse absorption location, and compensate for effects caused by high laser pulse energy such as thermal lensing. The method can be used to form a Fresnel lens in the optical zone.
Abstract:
A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
Abstract:
A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.