Abstract:
A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
Abstract:
A method of controlling a pixel array includes reading out image data from pixel cells of a row i of the of the pixel array with second transfer control signals that are coupled to be received by transfer transistors included in the pixels cells of the row of the of the pixel array that is being read out. Exposure times for pixel cells are independently controlled in other rows of the pixel array that are not being read out with first transfer control signals coupled to be received by transfer transistors included in the pixel cells in the other rows of the of the pixel array that are not being read out while the image data is read out from the pixel cells of row i of the pixel array.
Abstract:
A process including forming an a backside-illuminated (BSI) image sensor in a substrate, the image sensor including a pixel array formed in or near a front surface of the substrate and one or more circuit blocks formed in the substrate near the pixel array, each circuit block including at least one support circuit. An interconnect layer is formed on the front surface of the substrate that includes a dielectric within which are embedded traces and vias, wherein the traces and vias electrically couple the pixel array to at least one of the one or more support circuits. An isolation trench is formed surrounding at least one of the one or more circuit blocks to isolate the pixel array and other circuit blocks from noise generated by the at least one support circuit within the circuit block surrounded by the isolation trench. Other embodiments are disclosed and claimed.
Abstract:
An example imaging sensor system includes a Single-Photon Avalanche Diode (SPAD) imaging array formed in a first semiconductor layer of a first wafer. The SPAD imaging array includes an N number of pixels, each including a SPAD region formed in a front side of the first semiconductor layer. The first wafer is bonded to a second wafer at a bonding interface between a first interconnect layer of the first wafer and the second interconnect layer of the second wafer. An N number of digital counters are formed in a second semiconductor layer of the second wafer. Each of the digital counters are configured to count output pulses generated by a respective SPAD region.
Abstract:
An image sensor system includes an image sensor and a host controller. The image sensor includes a power input terminal, a data terminal, a clock input terminal, and a ground terminal. The host controller is coupled to the power input terminal to provide power to the image sensor, the data terminal to receive analog image data from the image sensor, the clock input terminal to provide a clock signal to the image sensor, and the ground terminal. The ground terminal serves as a common reference between the image sensor and one or more circuits of the host controller. The system also includes logic that is configured to transfer the analog image data from the image sensor to the host controller through the data terminal of the image sensor and to transfer one or more digital control signals between the image sensor and the host controller through the data terminal.
Abstract:
A multiple image sensor image acquisition system includes a clock control unit to generate a synchronization clock signal. The synchronization clock signal has a prolonged constant cycle during which the synchronization clock signal is held at a constant level for a period of time corresponding to multiple clock cycles. A first image sensor is coupled with the clock control unit to receive the synchronization clock signal and has a first synchronization unit that is operable to synchronize operation for the first image sensor based on detection of an end of the prolonged constant cycle. A second image sensor is coupled with the clock control unit to receive the synchronization clock signal and has a second synchronization unit that is operable to synchronize operation for the second image sensor based on detection of the end of the prolonged constant cycle. The image sensors are synchronized operationally.
Abstract:
Hybrid image sensors with video frame interpolation (and associated systems, devices, and methods) are disclosed herein. In one embodiment, an imaging system comprises one or more event vision sensor (EVS) pixels, and a plurality of CMOS image sensor (CIS) pixels. Each EVS pixel can be configured to capture event data corresponding to contrast information of light incident on the EVS pixel. Each CIS pixel can be configured to capture CIS data corresponding to intensity of light incident on the CIS pixel. The imaging system can further comprise a deblur circuit configured to deblur the CIS data captured by the plurality of CIS pixels using a first portion of the event data captured by the one or more EVS pixels, and a system processor configured to interpolate a video frame using the deblurred CIS data and all or a subset of the event data.
Abstract:
Hybrid image sensors with on-chip image deblur (and associated systems, devices, and methods) are disclosed herein. In one embodiment, an image sensor includes (a) a plurality of CMOS image sensor (CIS) pixels configured to capture CIS data corresponding intensity of light incident on CIS pixels of the plurality of CIS pixels, (b) an event vision sensor (EVS) pixel configured to capture EVS data corresponding to events detected in light incident on the EVS pixel, and (c) a deblur circuit configured to generate deblurred image data based on the CIS data and an accumulation of events in the EVS data. The deblur circuit can be configured to compute the accumulation of events, such as using an event-based double integral model.
Abstract:
An imaging system includes a pixel array with odd and even pixel cells. Each of the odd and even pixel cells includes a photodiode, a floating diffusion, a transfer transistor, a reset transistor, a lateral overflow integration capacitor (LOFIC), and an overflow gate (OFG) transistor. The imaging system further includes a readout circuit with a sample and hold (SH) circuit and an analog to digital converter. The OFG transistor of each of the odd and even pixel cells is configured to direct the image charge photogenerated by the respective photodiode away from the respective transfer transistor and reduce photodiode exposure shift during LOFIC readouts during a global transfer period.
Abstract:
An imaging system includes a pixel array with odd and even pixel cells. Each of the odd and even pixel cells includes a photodiode, a floating diffusion, a transfer transistor, a reset transistor, a lateral overflow integration capacitor (LOFIC), and an overflow gate (OFG) transistor. The imaging system further includes a readout circuit with a sample and hold (SH) circuit and an analog to digital converter. The OFG transistor of each of the odd and even pixel cells is configured to direct the image charge photogenerated by the respective photodiode away from the respective transfer transistor and reduce photodiode exposure shift during LOFIC readouts during a global transfer period.