DYNAMIC PARAMETER TUNING USING MODIFIED PARTICLE SWARM OPTIMIZATION

    公开(公告)号:US20180081327A1

    公开(公告)日:2018-03-22

    申请号:US15475065

    申请日:2017-03-30

    IPC分类号: G05B13/04

    CPC分类号: G05B13/04

    摘要: Dynamic parameter tuning using particle swarm optimization is disclosed. According to one embodiment, a system for dynamically tuning parameters comprising a control unit; and a system for receiving parameters tuned by the control unit. The control unit receives as input a model selection and definitions, and dynamically tunes a value for each parameter by using a modified particle swarm optimization method. The modified particle swarm optimization method comprises moving particle locations based on a particle's inertia, experience, global knowledge, and a tuning factor. The control unit outputs the dynamically tuned value for each parameter.

    DYNAMIC PARAMETER TUNING USING PARTICLE SWARM OPTIMIZATION
    14.
    发明申请
    DYNAMIC PARAMETER TUNING USING PARTICLE SWARM OPTIMIZATION 有权
    使用粒子优化的动态参数调谐

    公开(公告)号:US20140172125A1

    公开(公告)日:2014-06-19

    申请号:US14042539

    申请日:2013-09-30

    IPC分类号: G05B13/04

    CPC分类号: G05B13/04

    摘要: Dynamic parameter tuning using particle swarm optimization is disclosed. According to one embodiment, a system for dynamically tuning parameters comprising a control unit; and a system for receiving parameters tuned by the control unit. The control unit receives as input a model selection and definitions, and dynamically tunes a value for each parameter by using a modified particle swarm optimization method. The modified particle swarm optimization method comprises moving particle locations based on a particle's inertia, experience, global knowledge, and a tuning factor. The control unit outputs the dynamically tuned value for each parameter.

    摘要翻译: 公开了使用粒子群优化的动态参数调整。 根据一个实施例,一种用于动态调整包括控制单元的参数的系统; 以及用于接收由控制单元调谐的参数的系统。 控制单元作为输入接收模型选择和定义,并通过使用修改的粒子群优化方法动态调整每个参数的值。 改进的粒子群优化方法包括基于粒子的惯性,经验,全局知识和调谐因子来移动粒子位置。 控制单元输出每个参数的动态调整值。

    MODEL DRIVEN ESTIMATION OF FAULTED AREA IN ELECTRIC DISTRIBUTION SYSTEMS

    公开(公告)号:US20240348088A1

    公开(公告)日:2024-10-17

    申请号:US18611466

    申请日:2024-03-20

    摘要: A system for estimating faulted area in an electric distribution system. The system includes a database storing input data, a fault detection module to estimate, based on the input data, if a new faulted area estimation process is required, a condition estimation module to estimate condition of metered protective devices, un-metered protective devices, and metered devices (PMDs), an upstream to downstream module to assess condition of each metered protective device, un-metered protective device, and metered device (PMD), starting from a feeder circuit breaker towards feeder downstream, to estimate a tripped protective device and a last metered device upstream of a fault, and a downstream to upstream module configured to assess outaged electric loads or elements towards network upstream to find the common interrupting protective device.

    DYNAMIC PARAMETER TUNING USING MODIFIED PARTICLE SWARM OPTIMIZATION

    公开(公告)号:US20210255591A1

    公开(公告)日:2021-08-19

    申请号:US17145280

    申请日:2021-01-08

    IPC分类号: G05B13/04

    摘要: Dynamic parameter tuning using particle swarm optimization is disclosed. According to one embodiment, a system for dynamically tuning parameters comprising a control unit; and a system for receiving parameters tuned by the control unit. The control unit receives as input a model selection and definitions, and dynamically tunes a value for each parameter by using a modified particle swarm optimization method. The modified particle swarm optimization method comprises moving particle locations based on a particle's inertia, experience, global knowledge, and a tuning factor. The control unit outputs the dynamically tuned value for each parameter.

    PROACTIVE INTELLIGENT LOAD SHEDDING
    20.
    发明申请

    公开(公告)号:US20200161860A1

    公开(公告)日:2020-05-21

    申请号:US16586871

    申请日:2019-09-27

    IPC分类号: H02J3/14

    摘要: A power control system utilizing real-time power system operating data to effectuate predictive load shedding so as to accurately predict the need for and the optimal type of responsive action to a contingency—before the contingency actually occurs.