Abstract:
An optical flow sensing method includes: using an image sensor to capture images; using a directional-invariant filter device upon at least one first block of the first image to process values of pixels of the at least one first block of the first image, to generate a first filtered block image; using the first directional-invariant filter device upon at least one first block of the second image to process values of pixels of the at least one first block of the second image, to generate a second filtered block image; comparing the filtered block images to calculate a correlation result; and estimating a motion vector according to a plurality of correlation results.
Abstract:
An optical navigation apparatus and an optical navigation method are provided. The optical navigation apparatus includes a light source unit, an image sensing unit, and a processing unit, wherein the processing unit is electrically connected to the light source unit and the image sensing unit. The light source unit generates a beam of light. The image sensing unit captures a plurality of images within a time interval. The processing unit determines that the beam of light is projected onto a touch object according to the images, calculates a piece of displacement information related to the touch object according to the images, generates a comparison result by comparing the piece of displacement information with a threshold, and sets a displacement resolution of the optical navigation apparatus according to the comparison result.
Abstract:
An optical navigating apparatus, comprising: a displacement detecting apparatus, for determining if the optical navigating apparatus has displacement relative to an target, and for generating a displacement signal according to the displacement; and a touch control panel, for detecting a touch control operation of an user, wherein the touch control panel has a sampling rate and changes the sampling rate according to a control signal, wherein the sampling rate can be adjusted according to the displacement signal, where the sampling rate correspondingly decreases when the displacement signal indicates the displacement increases.
Abstract:
A multipoint positioning method for a touchpad including the steps of: scanning a touchpad to retrieve two-dimensional data; calculating an object area and a number of maxima of local maxima in the two-dimensional data; comparing the object area with an area threshold when the number of maxima is larger than 1; and identifying positions of the local maxima as a plurality of contact positions when the object area is larger than or equal to the area threshold.
Abstract:
There is provided an optical raindrop detector including a light source, a light guide, an image sensor and a processing unit. The light source alternatively emits light with different brightness values. The light guide has an incident surface, a detection surface and an ejection surface, wherein the light source emits incident light into the light guide via the incident surface, and a plurality of microstructures are formed on the ejection surface to reflect the incident light to become scattered light toward the detection surface. The image sensor receives reflected light formed by raindrops in front of the detection surface reflecting the scattered light to penetrate the light guide and eject from the ejection surface, and generates image frames corresponding to the different brightness values of the light source. The processing unit calculates differential images of the image frames to accordingly identify rain intensity.
Abstract:
A distance measurement system and method are provided. The distance measurement method first projects a light beam with a speckle pattern to reference planes and an object to allow the reference planes and a surface of the object each have an image of the speckle pattern, the speckle pattern having a plurality of speckles. Next, images of the speckle pattern reflected by the reference planes are captured to generate reference image information, and an image of the speckle pattern reflected by the surface of the object is captured to generate an object image information. A processing module which may be a processing software can compare the object image information with the reference image information to obtain several similarity scores. If the most the most similarity score is greater than a threshold value, the processing module identifies the corresponding reference plane, thereby computing the position of the object.
Abstract:
A storage media provided by the present invention, has a non-transitory processing software for computing a position of an object in a distance measurement system, the execution of the processing software comprising: receiving a plurality of reference image information contained in an image with a speckle pattern, wherein the image is projected from a light beam on a plurality of reference flat surfaces which are located on different position points, and the speckle contains a plurality of speckles; receiving an object image information contained in an image with the speckle pattern which is projected from the light beam on an object; obtaining a plurality of comparison results through comparing the plurality of reference image information with the object image information; and computing the position of the object through performing an interpolation operation to the plurality of comparison results.
Abstract:
An optical detecting apparatus, which comprises: a detecting surface; a first light source, for providing light parallel to the detecting surface; an image sensor, for detecting an object close to the detecting surface, to generate object image data; and an object location determining apparatus, for computing location information of the object according to the object image.
Abstract:
A pressure detection device of detecting a forced state of a deformable object includes a body, an image sensor and a processor. The body is a deformable hollow structure. The body has an inner surface and an outer surface, and an identifiable vision feature is disposed on the inner surface. The image sensor is disposed inside the body and faces the inner surface of the body, and is adapted to capture a frame containing the identifiable vision feature on the inner surface. The processor is electrically connected with the image sensor, and adapted to analyze position variation of the identifiable vision feature within the captured frame for identifying a motion type of a gesture applied to the outer surface of the body.
Abstract:
An optical flow sensing method includes: using an image sensor to capture images; using a directional-invariant filter device upon at least one first block of the first image to process values of pixels of the at least one first block of the first image, to generate a first filtered block image; using the first directional-invariant filter device upon at least one first block of the second image to process values of pixels of the at least one first block of the second image, to generate a second filtered block image; comparing the filtered block images to calculate a correlation result; and estimating a motion vector according to a plurality of correlation results.