Abstract:
A transmitter apparatus is provided with a first multi-value signal generator to convert the non-video signal of natural number “a”×natural number M bits other than a video signal into a multi-value signal of a multi-value number 2aM and to output a resulting signal, a second multi-value signal generator to convert the video signal of natural number “a”×natural number N bits into a multi-value signal of a multi-value number 2aN larger than the multi-value number 2aM and to output a resulting signal, and a transmission driver circuit to transmit the multi-value signal of the multi-value number 2aM in at least partial time interval of a blanking time interval and to transmit the multi-value signal of the multi-value number 2aN in an active time interval.
Abstract:
An imaging device including a first filter that passes a first light and a second light; a second filter that blocks the second light; photoelectric converters that have sensitivity to the first light and the second light; and a processor, in which one of the photoelectric converters detects a light passing through the first filter to generate a first signal, one of the photoelectric converters detects a light passing through the first filter and the second filter to generate a second signal, and the processor performs the second light sensing based on the first signal and the second signal.
Abstract:
An imaging apparatus that is mounted on a vehicle that runs on a road surface includes: a light source that emits illumination light which is infrared light; a solid-state imaging device that images a subject and outputs an imaging signal indicating a light exposure amount; and a computator that computes subject information regarding the subject by using the imaging signal. The solid-state imaging device includes: first pixels that image the subject by receiving reflected light that is the illumination light reflected off the subject; and second pixels that image the subject by receiving visible light. Information indicated by an imaging signal outputted from the first pixels is information regarding a slope of the road surface, and information indicated by an imaging signal outputted from the second pixels is information regarding an appearance of the road surface.
Abstract:
An in-vehicle light apparatus for a vehicle is provided and includes lamp radar units. The lamp unit includes a light source and a reflector arranged around the light source and outputting light from an opening area of the reflector to a predetermined region including in a first direction. The radar unit is provided on a lower or upper side of the lamp unit and includes a circuit board having a board surface arranged in a substantially horizontal state and an antenna unit that transmits an electromagnetic wave and receives a reflected wave in a second direction. The opening area extends in a third direction different from the first direction and the second direction in plan view, and a direction perpendicular to the second direction on the board surface is a direction intersecting the first direction and non-parallel to the third direction.
Abstract:
An in-vehicle light apparatus for monitoring a region in a first direction outside a vehicle, including: a lamp unit including a light source and a reflector; a radar unit including a circuit board disposed such that a board surface extends substantially along the horizontal direction on a lower side or an upper side of the lamp unit and a plurality of antenna elements disposed in the hoard surface of the circuit hoard to transmit an electromagnetic wave in the first direction; and the plurality of the antenna elements are arranged in an array on the first direction side relative to the reflector in plan view, and an array direction of the plurality of antenna elements is a direction intersecting the first direction and non-parallel to an extending direction of an end portion on the side of the first direction of the reflector in plan view.
Abstract:
An imaging control device includes a controller and an input section. The controller causes an image sensor to, during at least one first frame period, capture at least one first multiple exposure image by using a first exposure signal that contains a plurality of pulses having a plurality of pulse widths different from one another; the image sensor is configured to capture an image by making multiple exposure. The input section receives the at least one first multiple exposure image. The controller selects one pulse width from the plurality of pulse widths, based on the first multiple exposure image received by the input section and then causes the image sensor to, during a second frame period, capture the image by using a second exposure signal that contains a pulse having the selected pulse width; the second frame period follows the first frame period.
Abstract:
In a common mode filter, at least one common mode filter portion is provided for removing a common mode noise, and has a first terminal pair configured to include first and second terminals connected to first and second external terminals, respectively, and has a second terminal pair configured to include third and fourth terminals connected to third and fourth external terminals, respectively. The filter includes an inductor circuit including at least two inductors that are connected in parallel to the first terminal pair of the common mode filter portion and are connected in series to each other, and an external terminal connected to the connection point of the at least two inductors. The external terminal is for being directly or indirectly grounded.
Abstract:
A light apparatus mounted on a vehicle includes a lamp that emits light into a first region through a first cover and a radar provided on a lower side or an upper side of the lamp. The radar includes a separator provided between the lamp and the radar, a circuit board having a board surface arranged in a substantially horizontal manner, and an antenna that is disposed on the board surface of the circuit board, transmits electromagnetic waves through a second cover in a second region that is at least partially different from the first region, and receives reflected waves through the second cover from objects outside the vehicle in the second region.
Abstract:
An image capture control device includes a recognition unit that determines whether a peripheral situation corresponds to a predetermined situation based on image data, and a controller that controls an infrared light irradiation unit to increase a pulse number of transmission pulses to be emitted to a target, when the recognition unit determines that the peripheral situation corresponds to the predetermined situation.
Abstract:
A camera system includes an imaging device that acquires a first image by a normal exposure including only one exposure and that acquires a second image by a multiple exposure including a plurality of exposures; and an image processor that extracts a feature value of a first object in the first image and that identifies one or more locations corresponding to the feature value in the second image.