摘要:
A method for a mechanism for processor power state aware distribution of lowest priority interrupts. The method of one embodiment comprises receiving first power state information from a first component and second power state information from a second component. First task priority information from the first component and second task priority from the second component are also received. An interrupt request from a first device for servicing is received. Power state and task priority information for the first and second components are evaluated to determine which component should service the interrupt request. Either the first component or the second component is selected to be a destination component to service the interrupt request based on the power state and task priority information. The interrupt request is communicated to the destination component.
摘要:
In some embodiments, an apparatus includes processors, signal storage circuitry, and processor selection logic. The signal storage circuitry is to hold willingness indication signals each indicative of a willingness level of an associated one of the processors to receive an interrupt and to hold priority indication signals each indicative of a processor priority level of an associated one of the processors, wherein there are multiple possible willingness levels and multiple possible processor priority levels. The processor selection logic is to select one of the processors to receive an interrupt based at least on the willingness indication signals. Other embodiments are described.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
In some embodiments, an apparatus includes processors, signal storage circuitry, and processor selection logic. The signal storage circuitry is to hold willingness indication signals each indicative of a willingness level of an associated one of the processors to receive an interrupt and to hold priority indication signals each indicative of a processor priority level of an associated one of the processors, wherein there are multiple possible willingness levels and multiple possible processor priority levels. The processor selection logic is to select one of the processors to receive an interrupt based at least on the willingness indication signals. Other embodiments are described.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
An apparatus and method for enumeration of processors during hot-plug of a compute node are described. The method includes the enumeration, in response to a hot-plug reset, of one or more processors. The enumeration is provided to a system architecture operating system in which a compute node is hot-plugged. Once enumeration is complete, the compute node is started in response to an operating system activation request. Accordingly, once device enumeration, as well as resource enumeration are complete, the one or more processors of the processor memory node are activated, such that the operating system may begin utilizing the processors of the hot-plugged compute node.
摘要:
One aspect of the invention relates to a method for supporting hibernation despite the presence of hot-plugged nodes and non-deterministic boot operations. The method comprises invoking a management interrupt in response to a Hibernate request. The management interrupt is used to obtain and store platform configuration information into a non-volatile storage location. The platform configuration information includes data to indicate whether a next boot sequence for a platform occurs as a deterministic boot sequence or a non-deterministic boot sequence as well as a boot node identifier and a listing of an order in which processors of the platform are initialized.
摘要:
One aspect of the invention relates to creation of a container object being part of software that is stored in platform readable medium and executed by a processor within a platform. The container comprises (i) a hardware identification object to identify to an operating system of the platform that a type of device represented by the container object is a node and (ii) a plurality of component objects to identify constituent components of the node. Another aspect of the invention is the distribution of BIOS to handle initiation of components of a substrate in response to hot-plug addition of that substrate.
摘要:
A method for a mechanism for processor power state aware distribution of lowest priority interrupts. The method of one embodiment comprises receiving first power state information from a first component and second power state information from a second component. First task priority information from the first component and second task priority from the second component are also received. An interrupt request from a first device for servicing is received. Power state and task priority information for the first and second components are evaluated to determine which component should service the interrupt request. Either the first component or the second component is selected to be a destination component to service the interrupt request based on the power state and task priority information. The interrupt request is communicated to the destination component.