Abstract:
A method for producing at least one porous layer on a substrate, whereby a suspension, which contains particles from a layer-forming material or molecular precursors of the layer-forming material, as well as at least one organic component, is applied to the substrate, the precursors of the layer-forming material are subsequently reacted to produce the layer-forming material following application to the substrate, in a next step, the particles from the layer-forming material are sintered, and the at least one organic component is subsequently removed. Also, a field-effect transistor having at least one gate electrode, the gate electrode having an electrically conductive, porous coating which was applied in accordance with the method.
Abstract:
Disclosed are a method for operating a hybrid vehicle, in which a predefined setpoint torque is cumulatively generated by at least one internal combustion engine and at least one electric motor, and a device for carrying out said method. According to the invention, the torque contribution of the internal combustion engine is defined in accordance with at least one exhaust gas parameter in a first step while the torque contribution of the electric motor is defined in a second step based on the difference between the setpoint torque and the torque contribution of the internal combustion engine defined in the first step. The inventive method allows the internal combustion engine to be operated in an optimal fashion regarding emissions.
Abstract:
A chemically sensitive field effect transistor includes a substrate, a conductor track structure situated on the substrate, and a functional layer which is contacted via the conductor track structure. To be able to form a thin, oxidation-stable and temperature-stable conductor track structure, the conductor track structure is made of a metal mixture which includes platinum and one or more metals selected from the group made up of rhodium, iridium, ruthenium, palladium, osmium, gold, scandium, yttrium, lanthanum, the lanthanides, titanium, zirconium, hafnium, niobium, tantalum, chromium, tungsten, rhenium, iron, cobalt, nickel, copper, boron, aluminum, gallium, indium, silicon, and germanium.
Abstract:
A sensor element of a gas sensor for determining gas components in gas mixtures includes a field effect transistor and/or a diode which has a current flow which changes upon contact with a gas to be detected, and which is positioned in a manner protected, by a protective cap, from direct access by the gas mixture. The protective cap has a heating element, a glass former, and/or an oxidation catalyst.
Abstract:
A sensor element of a gas sensor for determining gas components in gas mixtures includes a field effect transistor and/or a diode which has a current flow which changes upon contact with a gas to be detected, and which is positioned in a manner protected, by a protective cap, from direct access by the gas mixture. The protective cap has a heating element, a glass former, and/or an oxidation catalyst.
Abstract:
An exhaust gas system for an internal combustion engine includes a depth filter for removing soot from the exhaust gas. The depth filter includes a catalyst material, which promotes the oxidation of soot. An internal pore structure of the depth filter is provided with a catalyst material, which is liquid beyond a temperature of approximately no higher than 400° C. and more preferably no higher than approximately 350° C.