-
11.
公开(公告)号:US11441729B2
公开(公告)日:2022-09-13
申请号:US16726169
申请日:2019-12-23
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The present invention relates to a device for recovering, separating and purifying oil mist in a minimum quantity lubricant (MQL) grinding process, comprising: an air separating mechanism, which comprises a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is used for forming negative pressure in the pipeline, at least one conical filter mesh mechanism is arranged in the pipeline, and a tip of the conical filter mesh mechanism faces one side of an air inlet direction of the pipeline; and a filtering and recovering mechanism, which is connected with the pipeline and comprises a tank body, a filtering mechanism and a recovering mechanism, wherein the tank body is connected with the pipeline by a connecting part, and the filtering mechanism is connected with the recovering mechanism.
-
公开(公告)号:US11440209B2
公开(公告)日:2022-09-13
申请号:US16960821
申请日:2019-10-30
Inventor: Yali Hou , Changhe Li , Dongzhou Jia , Huayang Zhao , Wenyue Liu , Dan Liu , Yuhui Zhao , Zhongqi Lu , Yucheng Wang , Yanbin Zhang , Min Yang
IPC: B26D7/06
Abstract: A conical self-positioning limit feeding device and method. The conical self-positioning limit feeding device has bearing pot, empty circle in the center of bearing pot, U-shaped slide way formed between outer circle and inner circle, rotating evacuation cone and limit feeding rod arranged in the bearing pot and rotate in the same direction, and the speed of the rotating evacuation cone is greater than that of the limit feeding rod; materials are placed in the bearing pot, the evacuation cone rotates, and the materials rotate in the U-shaped slide way of the bearing pot by the torque generated by the friction between rotating evacuation cone and materials, till the long axes of the materials are tangent to the radius of the rotating evacuation cone; the limit feeding rod rotates and pushes materials to exit at equal intervals, thereby achieving the arrangement of the materials in the direction of long axis.
-
13.
公开(公告)号:US20210392809A1
公开(公告)日:2021-12-23
申请号:US17349725
申请日:2021-06-16
Applicant: Qingdao University of Technology , Institute of Agricultural Mechanization, Xinjiang Academy of Agricultural Sciences , Inner Mongolia University For Nationalities
Inventor: Changhe Li , Huayang Zhao , Dongzhou Jia , Rong Wang , Huimin Yang , Jia Shi , Yezhen Peng , Peng Gong , Qiyu Zhou , Deju Li , Zongbin Yuan , Yali Hou
Abstract: An intelligent seed production apparatus and method based on multistage screening and bud eye identification includes a feeding module, a pre-cutting module, a bud eye identifying and cutting module, and a material mixing module. The feeding module can screen out seed potatoes with the mass and shapes meeting the requirements through a multistage screening mechanism. The pre-cutting module can receive the seed potatoes discharged from the feeding module, and cut each seed potato in half; the bud eye identifying and cutting module can receive the seed potato pieces discharged from the pre-cutting module and determine the weight of the seed potatoes and identify the bud eye distribution on the surfaces of the seed potatoes, and cut the seed potato into multiple required tubers, so that bud eyes are distributed on different tubers uniformly. The material mixing module can receive the cut tubers, and complete the material mixing of the tubers.
-
公开(公告)号:US11161210B2
公开(公告)日:2021-11-02
申请号:US16683550
申请日:2019-11-14
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Yanbin Zhang , Huajun Cao , Zhenjing Duan , Cong Mao , Wenfeng Ding , Naiqing Zhang , Lan Dong , Xiufang Bai , Menghua Sui , Yonghong Liu , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The disclosure provides a milling system and method under different lubrication conditions. The system uses a tool to mill the workpiece, a force measuring system to measure the milling force, a tool change system to replace the tools, a tool storage to store the tools. It can store the tools, provide the lubricating oil to the milling surface, select different tools according to different processing conditions, select the best angle differences of the unequal spiral angle tools according to different conditions comprising dry cutting, casting-type lubrication, minimal quantities of lubrication or minimal quantities of nanofluid lubrication, and/or choose the optimal tool according to different cutting parameters in order to obtain the minimum milling force.
-
公开(公告)号:US11084136B2
公开(公告)日:2021-08-10
申请号:US16683605
申请日:2019-11-14
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Huajun Cao , Yonghong Liu , Wenfeng Ding , Naiqing Zhang , Lan Dong , Zhenjing Duan , Yanbin Zhang , Xiufang Bai , Menghua Sui , Wentao Wu , Gao Teng , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
Abstract: The disclosure provides a method and system for milling injected cutting fluid under different working conditions. By analyzing influence of airflow fields in a milling area under different working conditions on injection of cutting fluid, an influence rule of a helical angle and a rotation speed of a cutter on the flow field is quantitatively analyzed, an optimal target distance of a nozzle, an angle between the nozzle and a milling cutter feeding direction and an angle between the nozzle and the surface of a workpiece are comprehensively determined, the nozzle is set according to a determined setting manner, and lubricating oil is sprayed to the milling area by utilizing the nozzle.
-
公开(公告)号:US11951487B2
公开(公告)日:2024-04-09
申请号:US17285627
申请日:2020-05-09
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , RESEARCH INSTITUTE OF AGRICULTURAL MECHANIZATION XINJIANG ACADEMY OF AGRICULTURAL SCIENCES , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingzheng Liu , Xiaoming Wang , Huimin Yang , Xinping Li , Xiangdong Liu , Tuluhon Turdi , Ji Che , Lianxing Gao , Huayang Zhao , Xiaowei Zhang , Yanbin Zhang , Yifei Chen , Yali Hou
CPC classification number: B02C23/38 , B02C19/005 , B02C21/00 , B02C23/02 , B02C23/30
Abstract: The present invention discloses a same-cavity integrated vertical high-speed multistage superfine pulverizing device and method for walnut shells. The same-cavity integrated vertical high-speed multistage superfine pulverizing device for walnut shells includes a double-channel sliding type feeding device and a same-cavity integrated vertical pulverizing device. The same-cavity integrated vertical pulverizing device includes a material lifting disc and a same-cavity integrated vertical pulverizing barrel. A first-stage coarse crushing region, a second-stage fine crushing region, a third-stage pneumatic impact micro pulverizing region and a fourth-stage airflow mill superfine pulverizing region are disposed in the same-cavity integrated vertical pulverizing barrel. Walnut shells falling through the double-channel sliding type feeding device are uniformly lifted by the material lifting disc to a wedge-shaped gap of the first-stage coarse crushing region to be coarsely crushed, and coarsely crushed materials are finely crushed by the second-stage fine crushing region through a two-stage wedge-shaped direct-through gradually reducing gap. The third-stage pneumatic impact micro pulverizing region performs high-speed collision on finely crushed walnut shell particles, and walnut shell fine particles are carried by a high-speed airflow and are collided and violently rubbed to be pulverized. The microparticle grading is realized by the fourth-stage airflow mill superfine pulverizing region by using arc-shaped blades, and microparticles conforming to a particle size condition are attracted out through negative pressure attraction.
-
17.
公开(公告)号:US11898699B2
公开(公告)日:2024-02-13
申请号:US17279491
申请日:2020-02-06
Inventor: Changhe Li , Zhenjing Duan , Huajun Cao , Xuefeng Xu , Naiqing Zhang , Lan Dong , Yanbin Zhang , Xiufang Bai , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
CPC classification number: F16N7/32 , B23Q11/1046 , B23Q11/1069 , B24B55/12 , B01D45/16 , B01D46/0031 , B01D50/20 , B01D2273/30 , F01M2013/0438 , F16C33/6662
Abstract: An oil mist recovery, separation and purification device for a minimum quantity lubricant (MQL) grinding process, including: a pneumatic separation mechanism, a pipeline and a fan fixedly connected with one end of the pipeline, wherein the fan is configured to form a negative pressure in the pipeline, one cone-shaped filter mesh mechanism is disposed in the pipeline, and a tip of the cone-shaped filter mesh mechanism faces the side of an air inlet direction of the pipeline; and a filtering and recovery mechanism connected with the pipeline and including a case body, a filtering mechanism and a recovery mechanism, wherein the case body is connected with the pipeline through a connecting part, and the filtering mechanism is connected with the recovery mechanism. The device can separate, recover and reuse oil mist particles in the air.
-
公开(公告)号:US11819047B2
公开(公告)日:2023-11-21
申请号:US17279436
申请日:2020-02-06
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingzheng Liu , Yucheng Wang , Yanbin Zhang , Ji Che , Yali Hou , Xiaoming Wang , Yitian Feng , Rong Wang , Yiping Feng , Huaiyu Wang , Zhenming Jia , Lei Zhao , Guangzhen Miao , Runze Li , Teng Gao
IPC: A23N5/00
CPC classification number: A23N5/00
Abstract: A cam roller type horizontal extrusion cracking system for walnuts, including feeding, cracking and falling devices fixed accordingly on a stand. The feeding device includes a feeding box; an intermittent feeding roller is arranged therein; one side of the roller includes a feeding baffle plate, the other side includes an adjustable feeding scraper blade mechanism; and opposing feeding slots are formed in the roller. The cracking device includes an extrusion box body; movable and fixed tooth-shaped extrusion plates are oppositely mounted therein; one side of the movable plate opposite the fixed includes an extrusion cam; the plates have a plurality of tooth gaps; a walnut passes through the feeding device, falls into a gap between the plates; the cam drives the movable plate to do a periodic reciprocating motion, to synchronously cooperate with the fixed plate to perform extrusion cracking on the walnut.
-
公开(公告)号:US11771126B2
公开(公告)日:2023-10-03
申请号:US16959607
申请日:2019-10-29
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , XINJIANG JIANG NING LIGHT INDUSTRIAL MACHINERY ENGINEERING TECHNOLOGY CO., LTD.
Inventor: Changhe Li , Mingcun Shi , Yiping Feng , Yitian Feng , Zhenming Jia , Leilei Zhao , Rong Wang , Yucheng Wang , Yanbin Zhang , Ji Che , Runze Li , Cai Wang , Min Yang , Yali Hou
Abstract: The present invention discloses a multi-station adaptive walnut shell pre-breaking system, comprising a feeding device and a shell pre-breaking device. The feeding device comprises a feeding box, a single-helix twister and a double-helix twister are disposed in the feeding box, the single-helix twister and the double-helix twister rotate in opposite directions, and an adjustable spring partition is disposed below the single-helix twister and the double-helix twister; the shell pre-breaking device comprises a shell pre-breaking box, a plurality of squeezing stations are provided in the shell pre-breaking box, each of the squeezing stations is provided with a shell pre-breaking assembly, the shell pre-breaking assembly comprises a falling U-shaped plate and a squeezing U-shaped plate, a first end of the falling U-shaped plate is hinged to the shell pre-breaking box, a second end of the falling U-shaped plate is pushed to move by a falling cam, the end of the squeezing U-shaped plate opposite to the first end of the falling U-shaped plate is pushed to move by a squeezing cam, the end of the squeezing U-shaped plate opposite to the second end of the falling U-shaped plate is hinged to the shell pre-breaking box, the squeezing cam is in an outer dwell state when the falling cam moves, and the falling cam is in an outer dwell state when the squeezing cam moves.
-
公开(公告)号:US11766753B2
公开(公告)日:2023-09-26
申请号:US17468668
申请日:2021-09-07
Applicant: QINGDAO UNIVERSITY OF TECHNOLOGY , CHONGQING UNIVERSITY , SHANGHAI JINZHAO ENERGY SAVING TECHNOLOGY CO., LTD
Inventor: Changhe Li , Qingan Yin , Yanbin Zhang , Huajun Cao , Zhenjing Duan , Cong Mao , Wenfeng Ding , Naiqing Zhang , Lan Dong , Xiufang Bai , Menghua Sui , Yonghong Liu , Wentao Wu , Teng Gao , Min Yang , Dongzhou Jia , Runze Li , Yali Hou
CPC classification number: B23Q3/15503 , B23C1/06 , B23Q3/15713 , B23Q3/15722 , B23Q11/1046 , B23Q15/12 , B23Q17/0957 , B23Q17/0966 , Y10T409/304032 , Y10T483/10 , Y10T483/1755
Abstract: The disclosure provides a milling system and method under different lubrication conditions. The system uses a tool to mill the workpiece, a force measuring system to measure the milling force, a tool change system to replace the tools, a tool storage to store the tools. It can store the tools, provide the lubricating oil to the milling surface, select different tools according to different processing conditions, select the best angle differences of the unequal spiral angle tools according to different conditions comprising dry cutting, casting-type lubrication, minimal quantities of lubrication or minimal quantities of nanofluid lubrication, and/or choose the optimal tool according to different cutting parameters in order to obtain the minimum milling force.
-
-
-
-
-
-
-
-
-