Abstract:
Interference issues between wireless network devices are mitigated. An evolved node B (eNodeB) may experience higher cell load or higher interference when serving user equipment (UEs) that are operating in an cell range extension (CRE) area in which the UEs are strongly affected by aggressor eNodeBs. An eNodeB experiencing higher cell load or serving user equipments (UEs) under higher interference generally requests an interfering/aggressor eNodeB to repartition some of its resources. Repartitioning of resources, however, may have a negative impact on the eNodeB serving CRE area UEs. In one aspect, a new measurement of utilization accounts for CRE status and differentiates between protected and unprotected resources, such as subframes.
Abstract:
Techniques are described for managing QoS parameters of a bearer for which at least a portion of bearer data is served over a WLAN radio access technology. According to these techniques, a first device may identify a first set of one or more QoS parameters for serving a bearer over a wireless wide area network (WWAN). The first device may also determine a second set of one or more QoS parameters for serving the bearer over the WLAN based on an association between the first set of QoS parameters and the second set of one or more QoS parameters.
Abstract:
Techniques are disclosed for handover of a user equipment (UE) from a serving base station to a target base station. A target base station may use one or more directional beams to establish wireless communication links with UEs within a coverage area of the target base station. Directional beams may create a narrow-beam, high-bandwidth connection with a UE in a limited geographic area. Handover procedures include some latency between when a target base station dedicates resources to a UE and when the UE executes a communication via those dedicated resources. To compensate for latencies in a handover procedure and for the geographic limitations of directional beams, a target base station may assign multiple directional beams to the UE during a handover procedure. Each directional beam may be associated with access parameters used by the UE to generate messages (e.g., a RACH message) during the handover procedure.
Abstract:
A method of wireless communication by a user equipment (UE) may include receiving a message requesting estimated channel characteristics of a secondary band based on measuring characteristics of a channel in the primary band. The method also includes measuring characteristics of the channel in the primary band. The method estimates channel characteristics of the secondary band based on the primary band characteristics measurements. The estimating may occur without measuring signals in the secondary band. Further, the method may report the estimated channel characteristics of the secondary band and receive an indication of a secondary cell group, based on the estimated channel characteristics of the secondary band.
Abstract:
A method of wireless communication, executed by a user equipment (UE), receives, from a base station, a broadcast or multicast message including a known payload, as well as a configuration for the known payload. The method also trains an artificial neural network with the known payload. A method of wireless communication, executed by a base station, configures a known payload for multiple UEs and signals, to the UEs, an indication of which physical channel will include the known payload, as well as time/frequency resources of the known payload. The method also broadcasts or multicasts the known payload to facilitate neural network training at the UEs.
Abstract:
Wireless communications systems and methods related to indicating antenna configuration information and neural network information are disclosed. Neural network information may be selected for an encoder side based on an antenna configuration of a first device housing the encoder. This information may be transmitted with the antenna configuration information to a second device, which may jointly train the neural network with the first device. The first device may further transmit one or more weights after the training, which are stored with the antenna configuration information at the second device as well. When a third device with similar antenna configuration as the first device establishes communication with the second device, the second device may transmit neural network information, as well as weights, to the third device. The third device may use this information, instead of default information, to speed up neural network initialization and training.
Abstract:
The apparatus for wireless communication includes a processing system. The processing system is configured to establish a first radio link with a master base station, establish a second radio link with a first cell associated with a secondary base station, wherein the second radio link comprises a SRB, receive a RRC connection reconfiguration signal from the second radio link SRB to enable measurement reports associated with the second radio link, and provide a measurement report to the secondary base station associated with the second radio link using the second radio link SRB.
Abstract:
Apparatuses and methods of beam switching are presented. A first beam switch message (BSM) is transmitted to a second device, the first BSM including a first instruction for switching beams. A reset state is selected from a plurality of reset states including a first state for the second device to disregard the first instruction and a second state for the second device to maintain execution of the first instruction. A second BSM is transmitted to the second device before the second device completes execution of the first instruction. The second BSM includes a second instruction for switching beams and indicating which reset state is selected.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
A user equipment (UE) may transmit a UE-generated uplink message to a base station to request resources for an uplink transmission. The UE may be configured to send the message (e.g., a scheduling request (SR)) using different transmission modes. For example, the UE may transmit the SR using a scheduled mode where the UE conveys the SR along with another uplink message (e.g., a control message). In some examples, the UE may transmit the SR using an autonomous mode where the UE transmits the SR in resources reserved for SR transmissions. The UE may determine which transmission mode to use based on certain characteristics of the SR or the data associated with the SR.