Abstract:
A method of wireless communication at a user equipment (UE), including: generating a first set of frequencies to search for signals from at least one candidate cell from which the UE may receive wireless service with respect to a first subscriber identity module (SIM); generating a second set of frequencies to search for signals from the at least one candidate cell from which the UE may receive wireless service with respect to the first SIM; scanning for one or more signals from the at least one candidate cell including tuning a first transceiver configured to operate in accordance with the first SIM to one or more of the first set frequencies; and scanning for one or more signals from the at least one candidate cell including tuning a second transceiver configured to operate in accordance with a second SIM to one or more of the second set of frequencies.
Abstract:
Methods, systems, and devices for wireless communications manager are described. An example method for wireless communication at a UE includes receiving a request for a frequency band capability of the UE from a network, wherein the request includes a plurality of network frequency bands. The method may also include selecting a subset of frequency band combinations from a plurality of frequency band combinations supported by the UE, wherein a numerical quantity of the plurality of frequency band combinations supported by the UE exceeds a size constraint of a capability message, and wherein the subset includes at least one frequency band combination for each network frequency band. The method may also include sending the capability message in response to the request that includes an indication of the subset of frequency band combinations.
Abstract:
Aspects of resolving conflicting configuration parameters during wireless communication include triggering reselection to a new cell from a current cell and determining that a user equipment (UE) is configured in a forward access channel (FACH) state and is waiting for a Layer 2 Acknowledgement (L2 ACK) message from a network entity when reselection to the new cell is triggered. Further, the aspects include performing a collision resolution procedure in response to the determination that the UE is configured in the FACH state and is waiting for the L2 ACK message. In some aspects, the collision resolution procedure establishes which one of a plurality of information elements (IEs) to choose for a reconfiguration procedure.
Abstract:
The present disclosure describes a method and an apparatus for managing security mode command (SMC) integrity failures at a user equipment (UE). For example, a method is provided for managing SMC integrity failures which receives a SMC message at the UE from a network entity. A message authentication code for data integrity (MAC-I) failure based at least on a mismatch of a security parameter at the UE may be detected at the UE. Moreover, a corrective action may be performed at the UE in response to the detection of the MAC-I failure at the UE.
Abstract:
The present disclosure presents an improved method and apparatus for re-transmission of reconfiguration messages. For example, the disclosure presents a method for detecting that a reconfiguration complete message is transmitted from a user equipment (UE) to a network and initiating a reconfiguration re-transmission timer upon the detection. In addition, such an example method, may include determining that the UE has not received a layer two acknowledgement (L2 ACK) message for the transmitted reconfiguration complete message from the network prior to expiration of the reconfiguration re-transmission timer and triggering a cell update message to the network in response to the determination that the UE has not received the L2 ACK message. As such, improved re-transmission of reconfiguration messages may be achieved.
Abstract:
The present disclosure presents a method and apparatus for expedited mobile device handover that include performing one or more handover tasks in parallel that have previously been performed exclusively in serial. For example, the disclosure presents a method for wireless device handover, which may include acquiring a target cell, ascertaining a system frame number (SFN) of the target cell, calculating a connection frame number (CFN) for a dedicated channel (DCH) transmission, and reconfiguring a dedicated physical channel (DPCH) based on the calculated CFN. In addition, such an example method may include, while performing at least one of the ascertaining of the SFN, the calculating of the CFN, and the reconfiguring of the DPCH, contemporaneously performing at least one of establishing a downlink dedicated physical channel (DL-DPCH), establishing a synchronization with the target cell, and establishing an uplink dedicated physical channel (UL-DPCH) subsequent to the downlink synchronization.
Abstract:
The aspects described herein are directed to an apparatus supporting a combination of frequency bands including a first frequency band associated with a primary cell (PCell) and at least a second frequency band associated with a secondary cell (SCell). The apparatus may prune out measurements of frequency bands associated with the SCell, where the frequency bands associated with the SCell may not be supported or deployed at the apparatus when the PCell is too weak. The apparatus measures the first frequency band associated with the PCell and measures the second frequency band associated with the SCell if the measurement of the first frequency band is greater than or equal to a threshold. The apparatus transmits a report including at least the measurement of the first frequency band.
Abstract:
Methods, systems, and devices for wireless communications are described. A network entity may support communications with a user equipment (UE) that is moving at a first speed that meets or exceeds a threshold via a cell that is configured to support such communications, which may be referred to as a high speed train (HST) cell. The network entity and the UE may support cell acquisition that prioritizes camping on an HST cell over a non-HST cell. The UE and the network entity may communicate acquisition signaling associated with establishing a connection with the network entity using a first frequency associated with an HST cell and a non-HST cell. Based on an identifier indicating that the HST cell is an HST cell, the UE may prioritize the HST cell over the non-HST cell during cell acquisition and establish the connection with the network entity via the HST cell.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that the UE is operating using a first subscriber identity module (SIM) in a non-standalone mode associated with a first radio access technology (RAT) and a second RAT, and that a second SIM has been activated for the UE. The UE may determine, based at least in part on user input, whether to operate in a multi-SIM mode, where both the first SIM and the second SIM are active, or to operate in a single SIM mode where only the first SIM, and not the second SIM, is active. The UE may selectively deactivate the second SIM based at least in part on determining whether to operate in the multi-SIM mode or the single SIM mode. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may measure a power value for each beam from one or more cells and calculate an average beam power for each cell. The UE may transmit these calculated averages to a base station in a report, and the base station may select a cell for communications based on the measurement report. The UE may also include a number indicating how many beams are used when calculating an average beam power, a ratio between a maximum and minimum beam power for each cell, two average beam powers based on two defined thresholds, or a combination of these measurements, in the transmitted report. The UE may add a bias to the average beam power for a particular cell to indicate a preference for that cell over the other candidate cells.