Abstract:
A frequency synthesizer is disclosed that includes an oscillator having an output to deliver a signal of a controllable frequency. The oscillator includes a capacitor bank responsive to an N-bit control signal to exhibit a capacitance. The oscillator output frequency is based on the capacitance. Control logic generates the N-bit control signal and determines each bit of the N-bit control signal through a binary search step and a modulation of a least-significant-bit (LSB) of the N-bit control signal. The LSB modulation, combined with the binary search for each bit, results in a higher accuracy frequency estimation.
Abstract:
A variable attenuator can be used with high-voltage radio-frequency signals. The attenuator can provide wide dynamic range with little loss at the lowest attenuation level. The attenuator may be implemented in digital integrated circuit processes and occupies small integrated circuit area. Additionally, the use of circuit elements external to the SoC may be reduced. The attenuator uses multiple attenuator cells connected in parallel to an RF input and RF output. The attenuator cells use capacitive dividers with pair of capacitors laid out in the same integrated circuit area. The capacitors are also laid out so that the RF input shields the RF output from ground to avoid parasitic capacitance on the RF output.
Abstract:
A frequency synthesizer is disclosed that includes an oscillator having an output to deliver a signal of a controllable frequency. The oscillator includes a capacitor bank responsive to an N-bit control signal to exhibit a capacitance. The oscillator output frequency is based on the capacitance. Control logic generates the N-bit control signal and determines each bit of the N-bit control signal through a binary search step and a modulation of a least-significant-bit (LSB) of the N-bit control signal. The LSB modulation, combined with the binary search for each bit, results in a higher accuracy frequency estimation.
Abstract:
A clock multiplier circuit includes a clock generator, a delay element, a logic gate, and a duty cycle correction circuit. The clock generator generates a clock signal. The delay element generates a delayed clock signal in response to the clock signal. The logic gate generates a frequency-multiplied clock signal in response to the clock signal and the delayed clock signal. The duty cycle correction circuit generates an adjustment signal based at least in part on the frequency-multiplied clock signal. The clock generator adjusts a duty cycle of the clock signal in response to the adjustment signal.
Abstract:
A clock generation circuit is disclosed that may generate a plurality of phase-delayed signals in a manner that may be relatively immune to VCO pulling. The clock generation circuit may include a circuit to generate an oscillating signal, a frequency divider to generate an RF signal having a frequency that is equal to 1/(n+0.5) times the frequency of the oscillating signal, wherein n is an integer value greater than or equal to one and n+0.5 is a non-integer value, and a DLL circuit to generate a plurality of local oscillator signals, wherein the local oscillator signals are phase-delayed with respect to each other.
Abstract:
A charge pump circuit is disclosed that includes a main charge pump, a replica charge pump, and an op-amp. The main charge pump includes up and down input terminals to receive UP and DN control signals, a control terminal to receive a calibration signal, and an output to generate a control voltage. The replica charge pump includes up and down input terminals to receive DN and UP control signals, a control terminal to receive the calibration signal, and an output to generate a replica voltage. The op-amp generates the calibration signal in response to the control voltage and the replica voltage.