Abstract:
A frequency synthesizing system includes a clock generator to generate a reference clock signal, a frequency doubler to generate a frequency-doubled clock signal in response to rising edges and falling edges of the reference clock signal, a frequency multiplier to generate a frequency-multiplied clock signal in response to either rising edges or falling edges of the frequency-doubled clock signal, and a fractional-N synthesizer coupled to the frequency multiplier to generate an output clock signal in response to the frequency-multiplied clock signal.
Abstract:
An oscillator circuit may selectively switch between a normal mode and a low-power mode in response to a mode signal. During the normal mode, the oscillator circuit may employ a first amplifier configuration and a first capacitive loading to generate a high-accuracy clock signal having a relatively low frequency error. During the low power mode, the oscillator circuit may employ a second amplifier configuration and a second capacitive loading to generate a low-power clock signal using minimal power consumption. A compensation circuit may be used to offset a relatively high frequency error during the low-power mode.
Abstract:
An oscillator circuit may selectively switch between a normal mode and a low-power mode in response to a mode signal. During the normal mode, the oscillator circuit may employ a first amplifier configuration and a first capacitive loading to generate a high-accuracy clock signal having a relatively low frequency error. During the low power mode, the oscillator circuit may employ a second amplifier configuration and a second capacitive loading to generate a low-power clock signal using minimal power consumption. A compensation circuit may be used to offset a relatively high frequency error during the low-power mode.
Abstract:
A charge pump circuit is disclosed that includes a main charge pump, a replica charge pump, and an op-amp. The main charge pump includes up and down input terminals to receive UP and DN control signals, a control terminal to receive a calibration signal, and an output to generate a control voltage. The replica charge pump includes up and down input terminals to receive DN and UP control signals, a control terminal to receive the calibration signal, and an output to generate a replica voltage. The op-amp generates the calibration signal in response to the control voltage and the replica voltage.
Abstract:
A variable attenuator can be used with high-voltage radio-frequency signals. The attenuator can provide wide dynamic range with little loss at the lowest attenuation level. The attenuator may be implemented in digital integrated circuit processes and occupies small integrated circuit area. Additionally, the use of circuit elements external to the SoC may be reduced. The attenuator uses multiple attenuator cells connected in parallel to an RF input and RF output. The attenuator cells use capacitive dividers with pair of capacitors laid out in the same integrated circuit area. The capacitors are also laid out so that the RF input shields the RF output from ground to avoid parasitic capacitance on the RF output.
Abstract:
A frequency synthesizing system includes a clock generator to generate a reference clock signal, a frequency doubler to generate a frequency-doubled clock signal in response to rising edges and falling edges of the reference clock signal, a frequency multiplier to generate a frequency-multiplied clock signal in response to either rising edges or falling edges of the frequency-doubled clock signal, and a fractional-N synthesizer coupled to the frequency multiplier to generate an output clock signal in response to the frequency-multiplied clock signal.
Abstract:
A delay-locked loop (DLL) circuit is disclosed that can generate an output oscillation signal having a frequency that is an integer multiple of an input oscillation signal. The DLL includes a phase detector, a charge pump, and a voltage-controlled oscillator (VCO). The phase detector generates UP and DN control signals in response to a phase difference between a reference signal and a feedback signal. The charge pump generates a control voltage in response to the UP and DN control signals. The VCO adjusts the frequency of the output oscillation signal in response to the control voltage, generates the reference signal in response to the input oscillation signal, and generates the feedback signal in response to the output oscillation signal.
Abstract:
A frequency divider is disclosed. The frequency divider includes a multi-modulus prescaler to perform a frequency division by a modulus M, wherein M is an integer between N and 2*N−1 and N is a power of 2. The frequency divider also includes a programmable counter to output the digital representation of M and an output clock signal. For the frequency divider, M equals N plus D minus D\N for each edge of the multi-modulus prescaler output clock CKpr wherein the counter samples the digital representation of D and D\N denotes an integer part of D divided by N, and M equals N for each subsequent edge of the prescaler output clock CKpr wherein the counter does not sample the digital representation of D.
Abstract:
An oscillator is disclosed that can generate an oscillation signal using a latch and two delay elements. For some embodiments, the oscillator includes an SR latch, a first delay element, and a second delay element. The SR latch has a first input, a second input, a first output, and a second output. The first delay element is coupled between the first output and the first input of the SR latch. The second delay element is coupled between the second output and the second input of the SR latch. For some embodiments, the first and second delay elements include a programmable pull-up circuit that allows the charging current to be adjusted in discrete amounts, and include a programmable capacitor circuit that allows the capacitance value to be adjusted in discrete amounts.
Abstract:
A frequency divider is disclosed. The frequency divider includes a multi-modulus prescaler to perform a frequency division by a modulus M, wherein M is an integer between N and 2*N−1 and N is a power of 2. The frequency divider also includes a programmable counter to output the digital representation of M and an output clock signal. For the frequency divider, M equals N plus D minus D\N for each edge of the multi-modulus prescaler output clock CKpr wherein the counter samples the digital representation of D and D\N denotes an integer part of D divided by N, and M equals N for each subsequent edge of the prescaler output clock CKpr wherein the counter does not sample the digital representation of D.