Abstract:
This disclosure provides systems, methods and apparatus for reducing harmonic emissions. One aspect of the disclosure provides a transmitter apparatus. The transmitter apparatus includes a driver circuit characterized by an efficiency and a power output level. The driver circuit further includes a filter circuit electrically connected to the driver circuit and configured to modify the impedance of the transmit circuit to maintain the efficiency of the driver circuit at a level that is within 20% of a maximum efficiency of the driver circuit when the impedance is within the complex impedance range. The filter circuit is further configured to maintain a substantially constant power output level irrespective of the reactive variations within the complex impedance range. The filter circuit is further configured to maintain a substantially linear relationship between the power output level and the resistive variations within the impedance range.
Abstract:
An apparatus for receiving wireless power is provided. The apparatus comprises a receive coupler configured to receive the wireless power from a wireless power transmitter. The apparatus comprises a receive circuit electrically connected to the receive coupler, the receive circuit configured to provide power to a load. The apparatus comprises a controller circuit configured to provide a first amount of power from the receive circuit to the load. The controller circuit is further configured to reduce the first amount of power to a second amount of power for a duration of communication with the wireless power transmitter to increase a difference between a first impedance and a second impedance of the receive circuit compared to when the first amount of power is provided to the load.
Abstract:
Exemplary embodiments are directed to controlling impedance. A wireless power transmitter for controlling impedance comprises a transmit circuit configured to wirelessly transmit power to a plurality of receivers, each having a load resistance, within a charging region of the transmit circuit. The transmitter also comprises a controller configured to request each receiver of the plurality of receivers to adjust its load resistance to a value that achieves a target total impedance as presented to the controller.
Abstract:
Exemplary embodiments are directed to controlling impedance. A wireless power transmitter for controlling impedance comprises a transmit circuit configured to wirelessly transmit power to a plurality of receivers, each having a load resistance, within a charging region of the transmit circuit. The transmitter also comprises a controller configured to request each receiver of the plurality of receivers to adjust its load resistance to a value that achieves a target total impedance as presented to the controller.
Abstract:
An apparatus for receiving wireless power is provided. The apparatus comprises a receive coupler configured to receive the wireless power from a wireless power transmitter. The apparatus comprises a receive circuit electrically connected to the receive coupler, the receive circuit configured to provide power to a load. The apparatus comprises a controller circuit configured to provide a first amount of power from the receive circuit to the load. The controller circuit is further configured to reduce the first amount of power to a second amount of power for a duration of communication with the wireless power transmitter to increase a difference between a first impedance and a second impedance of the receive circuit compared to when the first amount of power is provided to the load.
Abstract:
Exemplary embodiments are directed to control of field distribution of a wireless power transmitter. A transmitter may include a transmit antenna configured to generate a field. The transmitter may further include least one parasitic antenna proximate the transmit antenna and configured to modify a distribution of the generated field.
Abstract:
This disclosure provides systems, methods and apparatus for forward link communication in wireless power systems. One aspect of the disclosure provides a wireless charging device for providing wireless power to a receiving device. The wireless charging device includes a primary transmit antenna configured to generate a wireless power field. The device further includes a parasitic antenna configured to selectively adjust a coupling between the primary transmit antenna and the receiving device. The device further includes a controller configured to control the selective adjustment of the parasitic antenna so as to communicate with the receiving device.
Abstract:
Certain aspects of the present disclosure generally relate to a connection terminal pattern and layout for a three-level buck regulator. One example electronic module generally includes a substrate, an integrated circuit (IC) package disposed on the substrate and comprising transistors of a three-level buck regulator, a capacitive element of the three-level buck regulator disposed on the substrate, and an inductive element of the three-level buck regulator disposed on the substrate. In certain aspects, the capacitive element and the inductive element may be disposed adjacent to different sides of the IC package.
Abstract:
Devices and methods for controlling a power supply of a wireless power transmitter based on the request of a wireless power receiver are disclosed. One embodiment provides a wireless power receiver. The wireless power receiver includes a power receiver circuit configured to receive power from a wireless power transmitter at a level sufficient to power or charge a load. The wireless power receiver also includes a processor circuit configured to adjust a level of the received power being provided to the load based on a change in a level of received power to be requested to the wireless power transmitter. The processor circuit is further configured send to the wireless power transmitter the request to change the level of the received power to a first different level.
Abstract:
Exemplary embodiments are directed to a device include a parasitic coil for protection of the device. A device may include a first circuit configured to receive a first transmitted signal at an operational frequency. The device may also include a second circuit a second circuit configured to generate a field that opposes at least one of an undesirable portion of a wireless power field of the first transmitted signal and a portion of another wireless power field proximate the first circuit, the another wireless power field generated by a second transmitted signal at a non-operational frequency of the first circuit.