Abstract:
Systems and methodologies are described that facilitate assigning resources for an anchor carrier and an additional carrier with a grant message. The grant message communicated with an anchor carrier can include resource information a plurality of carriers. Moreover, the systems and methodologies that facilitate identifying control information for an anchor carrier and/or an additional carrier based upon an operating mode, wherein the operating mode is a legacy mode or an extended mode. Based on the operating mode, particular resources associated with control regions are monitored for control information for respective anchor carrier(s) or additional carrier(s).
Abstract:
A device includes a receiver, a buffer, a transmitter, and an analyzer. The receiver is configured to receive a plurality of packets that corresponds to at least a subset of a sequence of packets. Error correction data of a first packet of the plurality of packets includes a partial copy of a second packet of the plurality of packets. The analyzer is configured to determine whether a particular packet of the sequence is missing from the buffer, and to determine whether a partial copy of the particular packet is stored in the buffer. The analyzer is also configured to send, via the transmitter, a retransmit message to a second device based at least in part on determining that the buffer does not store the particular packet and that the buffer does not store the partial copy of the particular packet.
Abstract:
Various methods and systems for efficiently performing the blind decoding of downlink signals is described. Several forms of arranging possible CCE combinations are examined and investigated. Based on PDCCH size estimation/information, CCE concatenations that are most likely (of of limited sets) can be arrived at. Tree-based concatenations are also devised using largest CCE ordering to align smaller CCE sizes to similar boundaries. By such ordering, the search space for all possible CCE ordering and sizes can be reduced to an efficient tree. Set mapping between possible lnposelstartCCElnposelend/REs are also described using a first set to secondary and tertiary sets. Various other ordering and sorting schemes are also detailed that enable a blind decode of a PDCCH channel to be efficiently performed.
Abstract:
Systems and methodologies are described that facilitate efficiently indicating parameter(s) associated with a base station utilizing synchronization signals in a wireless communication environment. For instance, relative locations of a PSC and a SSC in a radio frame can be a function of a parameter. Further, a PSC sequence utilized to generate PSCs can be selected based upon a parameter. Moreover, inclusion or exclusion of PSCs from a radio frame can be a function of a parameter. Additionally or alternatively, pseudo random sequence mappings (e.g., to cell IDs, tone locations) can be a function of a parameter. Example parameters can be whether the base station is part of a TDD or a FDD system, whether the radio frame employs FS1 or FS2, whether the base station is associated with a macro or a femto cell, or whether the base station is associated with a unicast or a multicast system.
Abstract:
A method for configuring a ZeroCorrelationZoneConfig (Ncs) parameter of a base station is provided. The method comprises determining a count of timing synchronization failures between a mobile device and the base station. The method comprises upon determining that the count of timing synchronization failures satisfies a threshold, dynamically configuring an Ncs parameter. The method further comprises detecting an occurrence of a timing synchronization failure. The detecting the occurrence of the timing synchronization failure comprises receiving a first message comprising a preamble, generating a preamble identification (ID) for the received preamble, transmitting a second message comprising the preamble ID, and upon transmission of the second message, detecting a non-receipt of a third message.
Abstract:
Techniques for performing calibration and beamforming in a wireless communication system are described. In an aspect, a Node B may periodically perform calibration in each calibration interval with a set of UEs to obtain a calibration vector for the Node B. The Node B may apply the calibration vector to account for mismatches in the responses of the transmit and receive chains at the Node B. In another aspect, the Node B may perform beamforming to a UE by taking into account gain imbalance for multiple antennas at the UE. The Node B may determine a precoding matrix for beamforming by taking into account gain imbalance due to (i) different automatic gain control (AGC) gains for receive chains at the UE, (ii) different power amplifier (PA) gains for transmit chains at the UE, and/or (iii) different antenna gains for multiple antennas at the UE.
Abstract:
Systems and methodologies are described that facilitate efficiently indicating parameter(s) associated with a base station utilizing synchronization signals in a wireless communication environment. For instance, relative locations of a PSC and a SSC in a radio frame can be a function of a parameter. Further, a PSC sequence utilized to generate PSCs can be selected based upon a parameter. Moreover, inclusion or exclusion of PSCs from a radio frame can be a function of a parameter. Additionally or alternatively, pseudo random sequence mappings (e.g., to cell IDs, tone locations) can be a function of a parameter. Example parameters can be whether the base station is part of a TDD or a FDD system, whether the radio frame employs FS1 or FS2, whether the base station is associated with a macro or a femto cell, or whether the base station is associated with a unicast or a multicast system.
Abstract:
Techniques for bundling acknowledgement (ACK) information in a wireless communication system are described. In one design, a user equipment (UE) may receive multiple codewords in at least one downlink subframe. The UE may decode the multiple codewords and determine an ACK or a negative acknowledgement (NACK) for each codeword based on decoding result. The UE may bundle the ACKs and NACKs for the multiple codewords to obtain bundled ACK information. In one design, the UE may generate (i) a bundled ACK if ACKs are obtained for all codewords or (ii) a bundled NACK if a NACK is obtained for any codeword. The UE may send the bundled ACK information as feedback for the multiple codewords. The UE may receive retransmissions of the multiple codewords if a bundled NACK is sent and may receive new codewords if a bundled ACK is sent.
Abstract:
Multiple downlink (DL) and uplink (UL) carriers can enhance wireless communication between nodes and user equipment (UE). Among the carriers, it is beneficial to have some special, by configuration designated carriers to provide synchronization, system information, paging, data and control for multi-carrier enabled UEs. Thereby, overhead system information can be reduced. For instance, synchronization and paging for a certain cell are not provided on all carriers. A carrier can provide backward compatibility for single carrier UEs for access, synchronization, broadcast, and new control region within the data region of the legacy terminals. Coordination between nodes for selecting anchor carriers that mitigate interference and for transmit power control for non-anchor carriers provide further network performance advantages.
Abstract:
A device includes a receiver, a buffer, a transmitter, and an analyzer. The receiver is configured to receive a plurality of packets that corresponds to at least a subset of a sequence of packets. Error correction data of a first packet of the plurality of packets includes a partial copy of a second packet of the plurality of packets. The analyzer is configured to determine whether a particular packet of the sequence is missing from the buffer, and to determine whether a partial copy of the particular packet is stored in the buffer. The analyzer is also configured to send, via the transmitter, a retransmit message to a second device based at least in part on determining that the buffer does not store the particular packet and that the buffer does not store the partial copy of the particular packet.