Abstract:
A nasal assembly for delivering breathable gas to a patient includes a frame having an integrally formed first connector portion. A nozzle assembly includes a gusset or base portion and a pair of nozzles. At least one inlet conduit is structured to deliver breathable gas into the frame and nozzle assembly for breathing by the patient. A pair of second connector portions are removably and rotatably connected to respective first connector portions of the frame and are in communication with respective inlet conduits, e.g., directly or via angle connectors. A headgear assembly is removably connected to the pair of second connector portions and/or the angle connectors so as to maintain the frame and the nozzle assembly in a desired adjusted position on the patient's face.
Abstract:
A washout vent for a mask for use with a system for supplying breathable gas pressurized above atmospheric pressure to an airway of a mammal for treatment of sleep disordered breathing, includes a solid mask section and a vent orifice extending through a thickness of the solid mask section and adapted for gas washout. The vent orifice includes opposed side walls providing a flow passage that allows gas to flow along the opposed side walls from an interior of the mask to atmosphere in use, and the opposed side walls defining at least a portion of a conic section having a length substantially greater than its width. The vent orifice includes an orifice inlet at the interior of the mask and an orifice exit open to atmosphere, and the opposed side walls converge from the orifice inlet to the orifice exit to reduce noise of gas washout.
Abstract:
An interfacing structure is arranged to cooperate with a frame to contact with the skin of a patient. The interfacing structure includes a clip portion joined to a cushioning component. The frame is more rigid than the clip portion and the clip portion is more rigid than the cushioning component.
Abstract:
An air delivery system for providing a supply of air from a source of air at positive pressure to an interfacing structure located at the entrance to the airways of a patient includes a manifold adapted to connect with the supply of positive air pressure and at least one tube connected to the manifold and adapted to deliver the supply of air to the interfacing structure. Each tube is structured to allow movement between an open phase in which the tube allows the passage of air and a collapsed phase in which the tube is collapsed. Each tube is structured such that weight of a typical patient's head against bedding apparel is sufficient to collapse the tube from the open phase to the collapsed phase.
Abstract:
A patient interface for delivering breathable gas to a patient includes a foam interfacing portion adapted to provide a nasal interface to contact under and around the patient's nose in use and including an orifice adapted to surround both the patient's nares in use, and a positioning and stabilizing structure to support the foam interfacing portion in an operative position on the patient's face. The positioning and stabilizing structure is structured to provide a range of rotational, axial, and/or lateral movement to the foam interfacing portion while maintaining a sufficient interface and resisting the application of tube drag and/or headgear tension to the foam interfacing portion.
Abstract:
A respiratory mask assembly includes a frame having a channel and a cushioning element including a clip portion adapted for interference seal and retention in the channel. The cushioning element includes an interfacing portion constructed from foam and having a wider width than the clip portion.
Abstract:
A respiratory mask for use with a patient, and that is suited for use with children, includes a flexible cushion arranged to interface with and deliver air to the patient's nose. The cushion has a tube connection portion at one or both sides adjacent the patient's nares, the tube connection portion being arranged to connect to an air delivery tube. This location, plus the very low profile of the mask, allows a patient (e.g. an infant) to sleep on their face more comfortably. A more rigid support structure adjacent the cushion is provided to stabilize the cushion and prevent it from collapsing. Headgear is also provided and arranged for releasable attachment to the support structure.
Abstract:
A vent arrangement is provided to a mask or associated conduit to discharge exhaled gas from the mask to atmosphere. The vent arrangement is structured to diffuse the exhaust vent flow to produce less air jetting, thereby increasing the comfort of the patient and their bed partner. For example, the vent arrangement may include one or more grill components and/or media constructed and arranged to diffuse vent flow.
Abstract:
A nasal assembly for delivering breathable gas to a patient includes a frame having lateral connector, a cushion with a pair of nozzles, and a clip to secure the cushion to the frame. The frame includes a vent channel and a plurality of vent holes. The frame/cushion includes structure (lugs/cut outs) to prevent the assembly of an unvented frame with an unvented cushion, for safety purposes. The frame includes cored portions that interface with corner lugs provided on the cushion. A patient interface includes a frame, a cushion (nasal mask, nasal-oro mask, nozzles, etc.) and a vent assembly including a pattern of vent holes including at least two rows.
Abstract:
An interfacing structure is arranged to cooperate with a frame to contact with the skin of a patient. The interfacing structure includes a clip portion joined to a cushioning component. The frame is more rigid than the clip portion and the clip portion is more rigid than the cushioning component.