Abstract:
An integrated and self-contained suspension assembly having a gas spring integrated with a shock absorber (damper) is described. The rigid gas cylinder of the air spring is divided into a first gas chamber and a second gas chamber. A flow port connects the first and second gas chambers, and can be manually opened or closed by valve and a simple one-quarter turn rotation of an external knob to instantly switch the gas spring between two different spring rates. The different spring rates are functions of the separate or combined volumes of the two. gas chambers. The integrated suspension assembly is compactly packaged and self-contained, i.e., does not require any externalities, such as gas sources or electricity, to operate.
Abstract:
In one embodiment, a gas spring having a travel control includes positive and negative chambers and a valve mechanism that controls the fluid communication between the chambers. The valve mechanism includes a valve bore that while only moving a small amount, allows for large changes in gas spring travel length.
Abstract:
A damper includes a piston rod, a damping piston, at least one cylinder containing a damping liquid, a fixed partition member for partitioning the interior of the damper into two liquid chambers, a pressure source, and a valve in communication with the pressure source which reacts as a function of the pressure. The valve can also be in communication with additional forces, such as mechanical spring forces, which can be adjustable. The valve can include a pressure intensifier. The valve generates fluid flow resistance during flow of liquid in a first direction through the partition member. The fluid flow resistance in the first direction varies according to the amount of force communicated to the valve by the pressure source and any additional forces. The partition member can include means for providing low-resistance return flow of liquid in a second direction.
Abstract:
A bicycle suspension assembly including a damper body and having a valve, including a moveable inertia mass, movable between first and second positions to selectively alter the compression damping rate of the bicycle suspension assembly is described. The valve and especially the inertia mass can be substantially isolated from the effects of the rebound and compression fluid flows.
Abstract:
A gas spring curve control valve for a adjustable-volume gas-pressurized device is described. The valve allows for selection from among at least four spring curves and can be packaged in small spaces/devices. In an exemplary embodiment of the invention, a rotary cam having grooves and lobes that interact with spring loaded ball bearings and an external adjuster knob are used to easily change the gas spring curve “on-the-fly” and with minimal user effort.
Abstract:
Embodiments of the invention generally relate to methods and apparatus for use in vehicle suspension. Particular embodiments of the invention relate to methods and apparatus useful for variable spring rate and/or variable damping rate vehicle suspension. In one embodiment, a shock absorber for a vehicle includes a gas spring having first and second gas chambers. The first chamber is utilized during a first travel portion of the shock absorber and the first and second chambers are both utilized during a second portion of travel. The shock absorber further includes a fluid isolated damper for regulating the speed of travel throughout both portions of travel.
Abstract:
Methods and apparatus of a system for vehicles comprising a vehicle suspension, a sensor operable to measure an operational characteristic of the vehicle suspension, and a processor in communication with the sensor that is operable to suggest an operational setting of the vehicle suspension in response to an input from the sensor corresponding to the operational characteristic. A method for adjusting a suspension of a vehicle may comprise receiving suspension data with a processor, calculating a suspension setting suggestion with the processor, communicating the suspension setting suggestion to a user interface device, and adjusting the suspension based on the suspension setting suggestion.
Abstract:
A front bicycle suspension assembly having an inertia valve is described. The front bicycle suspension assembly may include at least upper and lower telescoping tubes and include a damping tube containing an inertia valve. The inertia valve may include an inertia mass movable along the outer surface of a valve shaft as the inertia valve moves between first and second positions.
Abstract:
A suspension system for a vehicle includes a damping assembly operatively connected to an actuator; a controller for controlling movement of said actuator whereby a damping rate of said damping assembly is adjusted by movement of the actuator; and a signal generating device remote from said damping assembly, which device, in use, provides an output electric signal representing a desired user adjustment to the damping rate of said damping assembly, said controller adapted to receive said electric signal and control said actuator to adjust said damping rate according to said electric signal, whereby said damping rate may be remotely altered during use of said vehicle.
Abstract:
Pressure-sensitive vales are incorporated within a dampening system to permit user-adjustable tuning of a shock absorber. In one embodiment, a pressure-sensitive valve includes an isolated gas chamber having a pressure therein that is settable by a user.