摘要:
A beam control system and method: The inventive system includes, an arrangement for receiving a first beam of electromagnetic energy; measuring wavefront aberrations in the first beam with a wavefront sensor; and removing global tilt from the measured wavefront aberrations to provide higher order aberrations for beam control. In the illustrative embodiment, the invention uses a traditional (quad-cell) Shack-Hartmann wavefront sensor to measure wavefront aberrations. An adaptive optics processor electronically removes the global tilt (angular jitter) from this measurement leaving only the higher-order Zernike components. These higher-order aberrations are then applied to wavefront control elements, such as deformable mirrors or spatial light modulators that correct the tracker image and apply a conjugate distortion to the wavefront of the outgoing HEL beam. A track error (angular jitter) component is supplied by a separate fine track sensor. This jitter error is then applied by the adaptive optics processor to a fast steering mirror, which corrects jitter in the tracker image and applies a compensating distortion to the LOS of the HEL beam.
摘要:
A beam control system and method which utilizes the wavefront reversal property of nonlinear optical phase conjugation to permit incorporation of a liquid crystal OPA within the low power legs of the beam control system, thereby affording the advantages of the OPA without the power limitations thereof. The invention is adapted for use with a beacon for illuminating a target with a first beam of electromagnetic energy. The system includes a telescope (1010) for receiving a target return comprising a reflection of the first beam from the target. An optical phased array (1050) is included for correcting for aberrations in the wavefront of the target return. A mechanism is included for ascertaining the correction applied by the optical phased array to the target return. The mechanism applies the correction to a third beam which ultimately is the output beam. In the illustrative embodiment, the first beam of electromagnetic energy is optical energy and the mechanism includes a first phase conjugate mirror (1091) adapted to conjugate electromagnetic energy output by the third mechanism and a second phase conjugate mirror (1092) adapted to conjugate the output of the first phase conjugate mirror. The fourth mechanism further includes an amplifier (1088) for boosting the signal output by the second phase conjugate mirror (1092) to provide the output beam.
摘要:
Methods and apparatus for improving the thermal performance of a slab laser pump cavity is provided. Absorbing regions placed on either side of an active lasing region through which the active region is pumped provides uniform heat dissipation across the width of the slab thereby providing one-dimensional heat flow perpendicular to the broad surfaces of the lasing medium and maintaining uniform lensing and birefringence. Foreshortened cold plates in thermal communication with the active lasing region also provide improved thermal performance by providing uniform one-dimensional heat flow perpendicular to the broad surfaces of the lasing slab. In addition, a compliant thermal interface of variable thickness is provided to also improve the distribution of heat flow. Further, cooling channels located within the cold plates are located to achieve uniform one-dimensional heat flow.
摘要:
A laser pump cavity apparatus with integral concentrator provides improved thermal lensing control, cooling and fracture strength. The concentrator is formed around a doped solid-state laser medium by diffusion bonding, using a material different than the doped laser medium and with a substantially lower index of refraction, higher thermal conductivity and higher stress fracture strength than the doped laser crystal. The concentrator has a top cladding layer with a cylindrical focusing surface and a bottom cladding layer with a cylindrical focusing surface and may have edge cladding layers. Cold plates, each of which also has one cylindrical surface, are placed in thermal contact with the cylindrical surfaces of the top and bottom cladding layers. The cylindrical surfaces preferably have hyperbolic or quasi-hyperbolic shape. The laser pump cavity apparatus is preferably pumped with several laser diode arrays in directions transverse to a laser beam axis. The pumplight is injected from the laser diode arrays through the edge cladding layers in directions toward line foci of the cylindrical surfaces. The concentrator top and bottom cladding material is preferably sapphire and the doped solid-state laser medium is preferably Yb:YAG. The edge cladding layers are preferably thermally insulating to maintain a one-dimensional heat flow condition within the doped laser medium, by forming them of a material that has lower thermal conductivity than the material used for the top and bottom cladding layers. The edge cladding layers are preferably made of undoped YAG material
摘要:
In one or more embodiments, a beam control apparatus and method for correcting aberrations include an off-aperture telescope configured to receive a beam of electromagnetic energy, wherein the telescope includes a first optical element and a second optical element. The second optical element is configured to be translated in three orthogonal axes, and a wavefront error sensor is configured to detect aberrations in the beam and to provide a wavefront error signal in response thereto. A processor is configured to provide a correction signal in response to the wavefront error signal, and an actuator is coupled to the second optical element and configured, in response to the wavefront error signal, to selectively translate the second optical element in one or more of three substantially orthogonal directions corresponding to the three orthogonal axes.
摘要:
A material having a surface and a dopant in the material distributed whereby the material has a spatially variant optical flux density profile. In accordance with the invention, tailored non-uniform gain profiles within a Yb:YAG laser component (rod, slab, disc, etc.) are achieved by a spatial material modification in the spatially masked pre-forms. High temperature-assisted reduction leads to the coordinate-dependent gain profiles, which are controlled by the topology of the deposited solid masks. The gain profiles are obtained by reducing the charge state of the laser-active trivalent Yb3+ ions into inactive divalent Yb2+ ions. This valence conversion process is driven by mass transport of ions and oxygen vacancies. These processes, in turn, affect the dopant distribution throughout the surface and bulk laser crystal.
摘要:
A solid state, laser light control device (20, 30) and material (10), and methods of producing same. The device (20, 30) and material (10) consist essentially of a host material (14) which contains: a dopant species (16) at a first valence state (a), the concentration of which increases with distance from the surface (18); and the same dopant species (16) at a second valence state (b), the concentration which decreases with distance from the surface (18). The method comprises the steps of: obtaining a doped solid state material (14); exposing the solid state material (14) to elevated temperature, for a period of time, in an oxidizing or reducing atmosphere. The elevated temperature and time of exposure are selected to change the valence state (a) of the dopant (16) in direct proportion to distance from the surface (18) of the solid state material (16). What is thereby produced is a solid state device (20, 30) in which the concentration of the dopant 16 at the second valence state (b) decreases with radius, the concentration of the dopant (16) at the first valence state (a) increases with radius, and the sum of these concentrations remains constant.
摘要:
A concentrator including a volume of at least partially transmissive material and a plurality of facets disposed at at least one surface thereof. Each of the facets is disposed at a position dependent angle relative to the surface effective to cause an internal reflection of energy applied to the layer whereby the density of the applied energy varies as a function of position. In the illustrative implementation, the volume is an active medium, i.e., a slab. The slab has substantially parallel, planar upper and lower surfaces and first and second edges therebetween. A plurality of cladding layers are disposed on the upper and lower surfaces of the slab. The facets are provided in the cladding layers on the upper and lower surfaces of the slab and angled as a function of distance relative to the first or the second edge. The facets provide a Fresnel reflecting surface or a binary optic surface.
摘要:
A method and apparatus are disclosed for providing a laser beam that is automatically aligned with a substantially rigid, stabilized platform or frame that can be oriented over a wide angular range, such as by the gimbals of a laser pointing and tracking system. A single-transverse-mode master laser oscillator 12 is mounted on the stabilized platform 13 which is part of the inner gimbal, which can be rotated about an elevation axis 16, and a multipass laser amplifier 21 wiht a phase conjugation mirror 22 and an optional nonlinear frequency-conversion device 20 are located off the inner gimbal. An outer gimbal or pedestal mount permits rotation about an azimuthal axis 17. The laser oscillator 12 and laser amplifier 21 are coupled by means of a beamsplitter 15 and two reflecting elements 18 and 19. The laser media used for the oscillator 12 and amplifier 21 are either the same, or compatible media having the same wavelength. In an alternative embodiment the two reflecting elements are replaced by a flexible ligh waveguide such as a glass fiber. The phase conjugation mirror 22 compensates the beam for the effects of optical aberrations caused by thermally induced changes in the amplifier medium and the nonlinear medium (if used) and also compensates the beam for angular tilt and jitter in the beam line of sight due to structural flexibility and motion of the stabilized platform. Four different embodiments are described in which the phase conjunction mirror is based on stimulated Brillouin scattering, degenerate four-wave mixing, three-wave mixing, and photon echo effects, respectively.
摘要:
A method and apparatus are disclosed for providing a self-aligning phase conjugate laser beam that is automatically boresighted with an active or passive tracking sensor. A single-transverse-mode laser oscillator 12 and a tracking sensor 14 are mounted on opposite sides of an output coupling beamsplitter 15, all attached to a stabilized platform 13 which is part of the inner gimbal of a pointing and tracking system. A multipass laser amplifier 21 with a phase conjugation mirror 22 and an optional nonlinear frequency-conversion device 20 are located off the inner gimbal. The inner gimbal allows rotation of the stabilized platform about an elevation axis 16, and an outer gimbal or pedestal mount permits rotation about an azimuthal axis 17. The phase conjugation mirror 22 compensates the beam for the effects of optical aberrations caused by thermally induced changes in the amplifier medium and the nonlinear medium (if used) and also compensates the beam for angular tilt and jitter in the beam line of sight due to structural flexibility and motion of the stabilized platform. Part of the oscillator output passes through the beamsplitter to the tracking sensor to mark the far-field location of the amplified output beam. The tracking sensor also views a target image after it is reflected by the beamsplitter. The tracking system measures the angular displacement between the target aimpoint and the locus of the output beam as marked by the oscillator and generates tracking error signals which are used to close a servomechanical feedback loop around the gimbal orientation apparatus. Pointing errors resulting from misalignment of the oscillator, the tracking sensor, and the beamsplitter are compensated by this technique.