Abstract:
An automated analyzer system for biological samples is provided and includes a sample processing system and a controller configured to receive a selection of one of multiple workflows for determining a presence and/or concentration of an analyte in a biological sample and prompt the automated analyzer system to automatically carry out the selected workflow using the sample processing system and output a result classifying the biological sample.
Abstract:
The present disclosure relates to a method for detecting a core polypeptide of a hepatitis C virus (HCV) in a sample from a subject involving (a) contacting said sample with a base and with a surfactant having a cationic detergent, and (b) detecting a core polypeptide of the HCV in the sample. The present invention further relates to a method for pre-processing a sample from a subject for detection of HCV, involving contacting the sample with a base and with a surfactant having a cationic detergent; and to a pre-processing reagent for detecting HCV in a sample, having a base and a surfactant including a cationic detergent, wherein the surfactant also has a nonionic detergent. Moreover, the present disclosure further relates to kits, uses, and devices related to the methods disclosed.
Abstract:
The invention concerns variants of JL7 antigens that are suitable for detecting antibodies against Trypanosoma cruzi (causing Chagas disease) in an isolated biological sample. These antigens comprise a JL7 specific amino acid sequence, said JL7 specific sequence consisting of two copies of SEQ ID NO. 2, wherein each of said two copies has an amino acid identity of at least 90% to SEQ ID NO.2 and wherein no further Trypanosoma cruzi specific amino acid sequences are present in said polypeptide. The invention also concerns a composition of polypeptides useful for the detection of antibodies against Trypanosoma cruzi that comprises the above characterized JL7 antigen along with at least one of T. cruzi polypeptides 1F8, Cruzipain, KMP-11 and PAR-2. Moreover, it relates to a method for producing JL7 antigen as well as to diagnostic methods for detecting T. cruzi antibodies using the JL7 polypeptide. In addition, the invention concerns a reagent kit comprising said JL7 polypeptides or composition of Trypanosoma cruzi polypeptides.
Abstract:
The present invention relates to a method for identifying a subject suffering from hepatitis B virus (HBV) infection as being susceptible to interferon treatment, said method comprising the steps of a) determining, in a sample of said subject, the amount of HBV immune complexes, b) comparing the amount of HBV immune complexes obtained in step a) to a reference value, and c) identifying a subject suffering from HBV infection as being susceptible to interferon treatment based on the result of the comparison made in step b). The present invention further relates to the use of the determination of the amount of HBV immune complexes in a sample from a subject suffering from HBV infection and of a detection agent for HBV immune complexes for identifying a subject suffering from HBV infection as being susceptible to interferon treatment. Furthermore, the present invention relates to a device and a kit allowing identifying a subject suffering from HBV infection as being susceptible to interferon treatment.
Abstract:
An automated analyzer system for biological samples is provided and includes a sample processing system and a controller configured to receive a selection of one of multiple workflows for determining a presence and/or concentration of an analyte in a biological sample and prompt the automated analyzer system to automatically carry out the selected workflow using the sample processing system and output a result classifying the biological sample.
Abstract:
Described is a method for determining an analyte in a sample suspected to contain the analyte, by a) contacting the sample with a first and a second capture compound for the analyte, wherein the first and second capture compounds are non-identical capture compounds, and the capture compounds compete in binding to the analyte; b) contacting the capture compounds contacted with the sample with a specifier, wherein the specifier competes in binding to the capture compounds with the analyte; c) determining the amount of complexes having the specifier and a capture compound; and d) determining the analyte in a sample based on the result of step c). Also disclosed is a method for improving the specificity of an indirect immunoassay for determining an analyte, as well as kits, devices, and uses related to the methods.
Abstract:
Disclosed is an immunoassay method for detecting an analyte such as an antigen or an antibody in an isolated sample suspected to contain the analyte by incubating the sample with a plurality of binding partners, one of which carries a detectable label, wherein a label-specific binding partner is added that does not carry a label but binds to the detectable label. The method is applicable for a large variety of analytes and has proven particularly useful for analyte antibodies of the IgG and IgM class present in samples due to infections by pathogens. Also disclosed is a reagent kit useful for the method comprising at least two analyte-specific binding partners one of which carries a detectable label and a label-specific binding partner that binds to said detectable label but itself does not carry a detectable label.
Abstract:
A test management system is presented. The system comprises an analyzer to perform tests a sample according to a first set of instructions, a manager module connected to the analyzer, and a first order interface connected to the manager module. The manager module directs activity of the analyzer according to a second set of instructions. The first order interface receives an order for a first analytical test and a second analytical test and transmits the order to the manager module. If the order is for the first analytical test, the test manager module forwards the order directly to the analyzer and the sample is analyzed by the analyzer according to the first set of instructions. If the order is for the second analytical test, the manager module handles the order according to the second set of instructions and generates and transmits secondary test requests to the analyzer.
Abstract:
The present invention concerns a composition of polypeptides suitable for detecting antibodies against Trypanosoma cruzi (T. cruzi) in an isolated biological sample consisting of three polypeptides 1F8, JL7 and Cruzipain. A method of producing a soluble and immunoreactive composition of polypeptides suitable for detecting antibodies against T. cruzi using said composition of polypeptides is also part of the invention. Moreover, the invention concerns a method for detecting antibodies specific for T. cruzi in an isolated sample wherein a composition of said T. cruzi polypeptides is used as well as a reagent kit comprising said composition of T. cruzi polypeptides.
Abstract:
The present invention relates to a method for determining an analyte in a sample suspected to comprise said analyte, comprising a) contacting with said sample at least a first and a second capture compound for said analyte, wherein said first and second capture compounds are non-identical capture compounds, and wherein said capture compounds compete in binding to said analyte; b) contacting said capture compounds contacted with said sample with a specifier, wherein said specifier competes in binding to said capture compounds with said analyte; c) determining the amount of complexes comprising said specifier and a capture compound; and d) determining said analyte in a sample based on the result of step c). The present invention further relates to a method for improving the specificity of an indirect immunoassay for determining an analyte, comprising replacing at least 10% of a capture compound by a non-identical capture compound; wherein the capture compound replaced competes in binding to said analyte with the capture compound introduced. The present invention further relates to kits, devices, and uses related to the aforementioned methods.