Abstract:
A test management system is presented. The system comprises an analyzer to perform tests a sample according to a first set of instructions, a manager module connected to the analyzer, and a first order interface connected to the manager module. The manager module directs activity of the analyzer according to a second set of instructions. The first order interface receives an order for a first analytical test and a second analytical test and transmits the order to the manager module. If the order is for the first analytical test, the test manager module forwards the order directly to the analyzer and the sample is analyzed by the analyzer according to the first set of instructions. If the order is for the second analytical test, the manager module handles the order according to the second set of instructions and generates and transmits secondary test requests to the analyzer.
Abstract:
The present disclosure relates to a method for detecting a core polypeptide of a hepatitis C virus (HCV) in a sample from a subject with the steps of (a) contacting the sample with a surfactant comprising a cationic detergent; (b) contacting the sample with a binding compound; and (c) detecting a core polypeptide of the HCV in the sample; wherein step a) is immediately followed by step b). The present disclosure further relates to a method for pre-processing a sample from a subject for detection of an HCV core polypeptide, involving (a) contacting the sample with a surfactant comprising a cationic detergent and, optionally, with an agent inducing a pH shift, immediately followed by (b) contacting the sample with a binding compound. Moreover, the present disclosure further relates to uses, devices, and analytical systems related to aforesaid methods.
Abstract:
The present disclosure relates to a method for detecting a core polypeptide of a hepatitis C virus (HCV) in a sample from a subject with the steps of (a) contacting the sample with a surfactant comprising a cationic detergent; (b) contacting the sample with a binding compound; and (c) detecting a core polypeptide of the HCV in the sample; wherein step a) is immediately followed by step b). The present disclosure further relates to a method for pre-processing a sample from a subject for detection of an HCV core polypeptide, involving (a) contacting the sample with a surfactant comprising a cationic detergent and, optionally, with an agent inducing a pH shift, immediately followed by (b) contacting the sample with a binding compound. Moreover, the present disclosure further relates to uses, devices, and analytical systems related to aforesaid methods.
Abstract:
The present disclosure relates to a method for detecting a core polypeptide of a hepatitis C virus (HCV) in a sample from a subject involving (a) contacting said sample with a base and with a surfactant having a cationic detergent, and (b) detecting a core polypeptide of the HCV in the sample. The present invention further relates to a method for pre-processing a sample from a subject for detection of HCV, involving contacting the sample with a base and with a surfactant having a cationic detergent; and to a pre-processing reagent for detecting HCV in a sample, having a base and a surfactant including a cationic detergent, wherein the surfactant also has a nonionic detergent. Moreover, the present disclosure further relates to kits, uses, and devices related to the methods disclosed.
Abstract:
The disclosure concerns a method and kits for measurement of an analyte in a microparticle-based analyte-specific binding assay. In the assay, the microparticles are coated with the first partner of a binding pair, mixing the coated microparticles and at least two analyte-specific binding agents, each conjugated to the second partner of the binding pair, and a sample suspected of containing the analyte. The second partner of the binding pair is bound to each of the analyte-specific binding agents via a linker comprising from 12 to 30 ethylene glycol units (PEG 12 to 30), thereby binding the analyte via the conjugated analyte-specific binding agents to the coated microparticles. The method also entails separating the microparticles having the analyte bound via the binding pair and the analyte-specific binding agent from the mixture and measuring the analyte bound to the microparticles.
Abstract:
The disclosure relates to a multi-epitope fusion protein as well as to its use as calibrator and/or control in an in vitro diagnostics immunoassay for detecting HCV core antigen. The multi-epitope fusion protein has two to six different non-overlapping linear peptides present in the amino acid sequence of hepatitis C virus (HCV) core protein, wherein each of the peptides is separated from the other peptides by a spacer consisting of a non-HCV amino acid sequence and having a chaperone amino acid sequence. No further HCV specific amino acid sequences are present in the polypeptide. A further aspect relates to a reagent kit for detecting HCV core antigen containing said multi-epitope fusion protein as calibrator or control or both.
Abstract:
The present invention concerns a composition of polypeptides suitable for detecting antibodies against Trypanosoma cruzi (T. cruzi) in an isolated biological sample consisting of three polypeptides 1F8, JL7 and Cruzipain. A method of producing a soluble and immunoreactive composition of polypeptides suitable for detecting antibodies against T. cruzi using said composition of polypeptides is also part of the invention. Moreover, the invention concerns a method for detecting antibodies specific for T. cruzi in an isolated sample wherein a composition of said T. cruzi polypeptides is used as well as a reagent kit comprising said composition of T. cruzi polypeptides.
Abstract:
Methods and system for determination of an anti- antibody (anti- AB) in vitro in a sample from a patient treated with a therapeutic monoclonal antibody (TmAB). Also, methods and systems for the determination of antigen specific antibodies of a particular immunoglobulin class and for the identification of a patient who is at risk of developing an adverse drug reaction (ADR) during treatment with a TmAB.
Abstract:
Disclosed is an immunoassay method for detecting an analyte such as an antigen or an antibody in an isolated sample suspected to contain the analyte by incubating the sample with a plurality of binding partners, one of which carries a detectable label, wherein a label-specific binding partner is added that does not carry a label but binds to the detectable label. The method is applicable for a large variety of analytes and has proven particularly useful for analyte antibodies of the IgG and IgM class present in samples due to infections by pathogens. Also disclosed is a reagent kit useful for the method comprising at least two analyte-specific binding partners one of which carries a detectable label and a label-specific binding partner that binds to said detectable label but itself does not carry a detectable label.
Abstract:
The disclosure relates to a multi-epitope fusion protein as well as to its use as calibrator and/or control in an in vitro diagnostics immunoassay for detecting HCV core antigen. The multi-epitope fusion protein has two to six different non-overlapping linear peptides present in the amino acid sequence of hepatitis C virus (HCV) core protein, wherein each of the peptides is separated from the other peptides by a spacer consisting of a non-HCV amino acid sequence and having a chaperone amino acid sequence. No further HCV specific amino acid sequences are present in the polypeptide. A further aspect relates to a reagent kit for detecting HCV core antigen containing said multi-epitope fusion protein as calibrator or control or both.