Abstract:
In a latch circuit having a bistable pair of cross connected transistors of a first polarity and a third transistor of a second polarity, a current signal greater than a bias current is received at a latch circuit port, amplified with the third transistor, and applied to the latch circuit port. This decreases the time in which the latch circuit port receiving the current signal greater than the bias current reaches a steady state voltage.
Abstract:
Provided is a method and system for controlling current characteristics in a transceiver having a transmitter. The transmitter includes a plurality of current cells. Each cell is configurable for operating in different modes. The method includes determining a first probability associated with transmitting data at a particular symbolic level and determining a second probability associated with each cell being used during a transmission at the particular symbolic level. Next, one of the modes for each cell is selected in accordance with anticipated performance requirements. An average current of the transmitter is then calculated based upon the determined first and second probabilities and the selected modes.
Abstract:
Provided is a method and system for controlling current characteristics in a transceiver having a transmitter. The method includes identifying a phase control signal from an adjacent current cell preceding the particular current cell in time and logically ORing the phase control signal from the preceding cell with a phase control signal from the particular current cell.
Abstract:
In a latch circuit having a bistable pair of cross connected transistors of a first polarity and a third transistor of a second polarity, a current signal greater than a bias current is received at a latch circuit port, amplified with the third transistor, and applied to the latch circuit port. This decreases the time in which the latch circuit port receiving the current signal greater than the bias current reaches a steady state voltage.
Abstract:
An N-bit analog to digital converter includes a reference ladder, a track-and-hold amplifier connected to an input voltage, a coarse ADC amplifier connected to a coarse capacitor at its input and having a coarse ADC reset switch controlled by a first clock phase of a two-phase clock, a fine ADC amplifier connected to a fine capacitor at its input and having a fine ADC reset switch controlled by a second clock phase of the two-phase clock, a switch matrix that selects a voltage subrange from the reference ladder for use by the fine ADC amplifier based on an output of the coarse ADC amplifier, and wherein the coarse capacitor is charged to a coarse reference ladder voltage during the first clock phase and connected to the T/H output during the second clock phase, wherein the fine capacitor is connected to a voltage subrange during the first clock phase and to the T/H output during the second clock phase, and an encoder that converts outputs of the coarse and fine ADC amplifiers to an N-bit output.
Abstract:
A programmable gain attenuator includes a termination resistor. A first termination switch connects one side of the termination resistor to a first output. A second termination switch connects another side of the termination resistor to a second output. A first resistor ladder is arranged between a first input and the first side of the termination resistor. A first plurality of switches connect a corresponding tap from the first resistor ladder to the first output. A second resistor ladder is arranged between a second input and the second side of the termination resistor. A second plurality of switches connect a corresponding tap from the second resistor ladder to the second output. A first switch of the first plurality of switches is turned on, followed by a second switch of first plurality of switches turned off, followed by a third switch of first plurality of switches turned on. A first switch of the second plurality of switches is turned on, followed by a second switch of second plurality of switches turned off, followed by a third switch of second plurality of switches turned on.
Abstract:
A programmable gain attenuator includes a termination resistor. A first termination switch connects one side of the termination resistor to a first output. A second termination switch connects another side of the termination resistor to a second output. A first resistor ladder is arranged between a first input and the first side of the termination resistor. A first plurality of switches connect a corresponding tap from the first resistor ladder to the first output. A second resistor ladder is arranged between a second input and the second side of the termination resistor. A second plurality of switches connect a corresponding tap from the second resistor ladder to the second output. A first switch of the first plurality of switches is turned on, followed by a second switch of first plurality of switches turned off, followed by a third switch of first plurality of switches turned on. A first switch of the second plurality of switches is turned on, followed by a second switch of second plurality of switches turned off, followed by a third switch of second plurality of switches turned on.
Abstract:
An input stage includes a plurality of arrays of autozero amplifiers arranged in series in each array, wherein each autozero amplifier receives an output of a preceding autozero amplifier, wherein a first autozero amplifier in each array amplifiers receives an input signal and a corresponding reference voltage at its inputs, and wherein at least one of the autozero amplifiers includes a circuit that receives the signal corresponding to the output signal, the circuit substantially passing the signal corresponding to the output signal and the reference voltages to the amplifiers during the clock phase φ2 and substantially rejecting the signal corresponding to the output signal during the clock phase φ1.
Abstract:
A method for reducing bit errors in an analog to digital converter having an array of comparators. The outputs of first and second comparators are received as in inputs to an Exclusive OR gate. The first and second comparators are separated in the array by a third comparator. The output of the Exclusive OR gate is used to determine if the third comparator is in a metastable condition. If the third comparator is in a metastable condition, the bias current of the latch circuit of the third comparator is increased to increase the rate at which the third comparator transitions to a steady state.
Abstract:
Provided is a circuit to perform single-ended to differential conversion while providing common-mode voltage control. The circuit includes a converter to convert a single-ended signal to a differential signal and a stabilizing circuit adapted to receive the differential signal. The stabilizing circuit includes a sensor configured to sense a common-mode voltage level of the differential signal and a comparator having an output port coupled to the converter. The comparator is configured to compare the differential signal common-mode voltage level with a reference signal common-mode voltage level and produce an adjusting signal based upon the comparison. The adjusting signal is applied to the converter via the output port and is operative to adjust a subsequent common-mode voltage level of the differential signal.