Abstract:
A display device includes a first substrate, a first wavelength conversion layer and a second wavelength conversion layer disposed on the first substrate and spaced apart from each other, and a polarization layer disposed on the first wavelength conversion layer and the second wavelength conversion layer, the polarization layer including a reflection portion and a transmitting portion, in which the reflection portion overlaps a gap formed between the first wavelength conversion layer and the second wavelength conversion layer.
Abstract:
A mold for a wire grid polarizer includes a hard mold and a soft mold, in which the hard mold includes a main body, an oxidization layer provided on the main body, and a SAM layer provided on the oxidization layer and including an additive, the soft mold includes a substrate, and a protrusions and depressions portion including a polymerized releasing agent, and a region that is hydrophobic in the polymerized releasing agent is arranged on a surface of the protrusions and depressions portion.
Abstract:
A display panel including a base substrate which includes a display area and a non-display area, a polarizing member disposed on a surface of the base substrate and including a plurality of grid patterns overlapping the display area and a reflective pattern overlapping the non-display area, and a pixel array layer which overlaps the polarizing member and is insulated from the polarizing member. A first height from the surface of the base substrate to an upper surface of the reflective pattern is different from a second height from the surface of the base substrate to upper surfaces of the grid patterns.
Abstract:
An organic light emitting display device includes a substrate comprising a first side and a second side, a first electrode on the first side of the substrate, an emitting layer on the first electrode, a second electrode on the emitting layer, and a slit-shaped pattern at the second side of the substrate, and comprising a plurality of protrusions spaced apart from each other.
Abstract:
A wire grid polarizer including a substrate, parallel conductive wire patterns which protrude from a top surface of the substrate, non-conductive wire patterns which are formed on the conductive wire patterns, respectively, and a protective layer which is formed on the conductive wire patterns and the non-conductive wire patterns. The protective layer includes first transparent particles having a diameter greater than a period of the conductive wire patterns, and spaces between the conductive wire patterns are filled with air or are evacuated to form a vacuum.
Abstract:
An organic light emitting display device includes a substrate comprising a first side and a second side, a first electrode on the first side of the substrate, an emitting layer on the first electrode, a second electrode on the emitting layer, and a slit-shaped pattern at the second side of the substrate, and comprising a plurality of protrusions spaced apart from each other.
Abstract:
A liquid crystal display includes a transparent insulation substrate, a first polarizer, and a semiconductor layer, a thin film transistor, and a backlight unit. The first polarizer is disposed on the transparent insulation substrate. The first polarizer includes a light blocking film and metal wires. The semiconductor layer, disposed on the light blocking film, has a perimeter aligned with a perimeter of the light blocking film. The thin film transistor, disposed on the semiconductor layer, includes a source region and a drain region disposed in the semiconductor layer. The backlight unit, disposed under the transparent insulation substrate, provides light to the transparent insulation substrate. The blocking film reflects substantially all of the light. Gaps are disposed between the metal wires.
Abstract:
A polarizing layer includes a substrate and a plurality of parallel wires disposed on the substrate. Each of the plurality of wires includes a base layer disposed on the substrate and an anti-reflective layer disposed on the base layer. The base layer includes aluminum or an aluminum alloy. The anti-reflective layer has a thickness within a range of 12 nm to 40 nm.
Abstract:
A press roller for imprint method including: a roller body having a cylindrical shape extending in a first direction; an energy generating part disposed on a curved surface of the roller body, the energy generating part including a plurality of energy generating units configured to be individually controlled to emit energy; and a compensation layer disposed on the energy generating part, the compensation layer including a material that expands in volume when the energy is applied.
Abstract:
Provided is a display panel including a base substrate which includes a display area and a non-display area, a polarizing member disposed on a surface of the base substrate and including a plurality of grid patterns overlapping the display area and a reflective pattern overlapping the non-display area, and a pixel array layer which overlaps the polarizing member and is insulated from the polarizing member, wherein a first height from the surface of the base substrate to an upper surface of the reflective pattern is different from a second height from the surface of the base substrate to upper surfaces of the grid patterns.