Abstract:
A tuning fork vibrator includes: a vibration arm including one or more grooves extending depthwise in a first direction; and exciting electrodes configured to provide a level of driving force required for vibrations of the vibration arm, wherein the one or more grooves have a cross-sectional shape in which a depth of the one or more grooves decreases from a first point toward a second point, and the depth of the one or more grooves at the second point is 30% or more of the depth of the groove at the first point.
Abstract:
An acoustic resonator includes a substrate and a resonant portion. The resonant portion has a central portion in which a first electrode, a first piezoelectric layer, a second piezoelectric layer, and a second electrode are stacked in order on the substrate, and an extension portion extending outwardly from the central portion and including an insertion layer. A ratio of an average thickness of the first piezoelectric layer to an average thickness of the second piezoelectric layer is 18.4% to 40%.
Abstract:
A bulk-acoustic wave resonator includes a resonator having a central portion in which a first electrode, a piezoelectric layer, and a second electrode are sequentially stacked on a substrate, and an extension portion disposed along a periphery of the central portion and in which an insertion layer is disposed below the piezoelectric layer, wherein the insertion layer includes a SiO2 thin film injected with fluorine (F).
Abstract:
A bulk-acoustic wave resonator includes: a substrate; and a resonator portion in which a first electrode, a piezoelectric layer, and a second electrode are sequentially stacked on the substrate. The piezoelectric layer is formed of aluminum nitride (AlN) containing scandium (Sc). The bulk-acoustic wave resonator satisfies the following expression: leakage current density×scandium (Sc) content
Abstract:
A bulk acoustic wave resonator includes: a substrate; a lower electrode disposed on the substrate; a piezoelectric layer at least partially disposed on the lower electrode; and an upper electrode disposed on the piezoelectric layer, wherein either one or both of the lower electrode and the upper electrode includes a layer of aluminum alloy including scandium (Sc).
Abstract:
An acoustic resonator includes a membrane layer disposed on an insulating layer; a cavity formed by the insulating layer and the membrane layer and having a hydrophobic layer disposed on at least one of a portion of an upper surface of the cavity and a portion of a lower surface of the cavity; and a resonating portion disposed on the cavity and having a second electrode on a piezoelectric layer on a first electrode.
Abstract:
An acoustic resonator and a method of manufacturing the same are provided. The acoustic resonator includes a resonating part including a first electrode, a second electrode, and a piezoelectric layer; and a plurality of seed layers disposed on one side of the resonating part.
Abstract:
In examples, there is provided a bulk acoustic wave resonator including: a substrate, a first electrode and a second electrode formed on the substrate, and a piezoelectric layer formed between the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode is formed of an alloy including a molybdenum element. Additionally, such a bulk acoustic wave resonator may include an air cavity formed between the substrate and the first electrode.
Abstract:
A bulk acoustic wave resonator includes: a first electrode; a piezoelectric layer disposed on at least a portion of the first electrode; and a second electrode disposed on the piezoelectric layer. The piezoelectric layer contains a dopant, and a value of [a thickness (nm) of the piezoelectric layer x a concentration (at %) of the dopant]/100 is less than or equal to 80.
Abstract:
A bulk-acoustic wave resonator may include: a substrate; a resonator unit including a first electrode disposed on the substrate, a piezoelectric layer disposed on the first electrode, and a second electrode disposed on the piezoelectric layer; and a protective layer disposed on a surface of the resonator unit. The protective layer is formed of a diamond film, and a grain size of the diamond film is 50 nm or more.