Abstract:
A beam steering device is provided including a p-n junction layer disposed on a reflective electrode layer, wherein a refractive index of the p-n junction layer is variable according to a voltage applied to the reflective electrode layer; a nanoantenna layer including a plurality of components disposed on the p-n junction layer; and a common electrode electrically connected to each of the plurality of components of the nanoantenna. The p-n junction layer may include a p-doped layer and an n-doped layer.
Abstract:
A method and apparatus for detecting an X-ray, the apparatus includes a detector which comprises a pixel array in which a plurality of pixels for detecting an X-ray transmitted by a body to be examined are arranged in a matrix form, a read-out unit which reads out electrical signals corresponding to the detected X-ray from the pixel array, and a reset controller which controls the pixel array to be reset after the X ray is detected, by performing switching so that the plurality of pixels of the pixel array are commonly connected to the reset power source.
Abstract:
A system on chip includes a central processing unit and a key manager coupled to the central processing unit. The key manager includes a random number generator configured to generate a key and a key memory configured to store the key and a user setting value associated with the key.
Abstract:
A semiconductor device includes a semiconductor layer extending in a first direction and including a source region and a drain region, which are apart from each other in the first direction; an insulating layer surrounding the semiconductor layer; a first gate electrode layer surrounding the insulating layer; a ferroelectric layer provided on the first gate electrode layer; and a second gate electrode layer provided on the ferroelectric layer.
Abstract:
Provided are semiconductor devices having a three-dimensional stacked structure and methods of manufacturing the same. A semiconductor device includes a plurality of channel structures on a substrate and arranged in a three-dimensional array; a plurality of gate electrodes extending in a direction parallel to the substrate; and a plurality of source and drain electrodes extending in a direction perpendicular to the substrate. The gate electrodes are connected to the channel structures arranged in the direction parallel to the substrate, and the source and drain electrodes are connected to the channel structures arranged in the direction perpendicular to the substrate. The channel structures include a channel layer and a ferroelectric layer on the channel layer.
Abstract:
A laser beam steering device for two-dimensionally steering a laser beam may include a refractive index converting layer whose charge concentration is configured to change based on an electric signal applied thereto; an antenna disposed above the refractive converting layer; a laser beam reflecting layer disposed below the refractive index converting layer and including a plurality of cells arranged in a two-dimensional matrix; and a driver disposed below the laser beam reflecting layer and including a plurality of driving circuits respectively connected to the plurality of cells, the plurality of driving circuits being configured to respectively apply electric signals to the plurality of cells.
Abstract:
A method of manufacturing an X-ray detector includes: applying a mask having an opening on a substrate on which a plurality of charge detection units are positioned; filling the opening with a paste including a photoelectric conversion material that absorbs X-rays to generate charges; and forming a photoconductive layer from the paste by separating the mask from the substrate. A thickness of the paste within the opening is thicker in an area adjacent to at least one edge among edges of the opening than in areas around other edges.
Abstract:
An X-ray detector may include: a thin film transistor (TFT) unit; and/or a capacitor unit. The capacitor unit may include two or more storage capacitors. The TFT unit may include: a gate electrode on one region of a substrate; a gate insulating layer on the gate electrode; an active layer on the gate insulating layer; and/or a source electrode and a drain electrode respectively on sides of the active layer.
Abstract:
A method of removing residual charge from a photoconductive material includes applying a first voltage to the photoconductive material to form an electrostatic field during a collection operation in which x-rays are irradiated onto the photoconductive material; and applying a second voltage to the photoconductor to reduce an amount of residual charge therein during a removal operation, the second voltage being different from the first voltage. In one or more example embodiments, the photoconductive material may include Mercury Iodine (Hgl2).