Abstract:
A composition or compositions useful as a well treatment fluid is disclosed containing high molecular weight guar and low molecular weight water soluble polymer having a lower molecular weight than the high molecular weight guar. The composition can also contain water and a crosslinking agent, and the low molecular weight water soluble polymer can include a low molecular weight guar. A method of treating a subterranean formation is also disclosed including placing the composition(s) in the subterranean formation.
Abstract:
Methods of treating a subterranean formation penetrated by a wellbore include providing environmental water, admixing a viscosifying amount of a polymer and at least one divalent cation with the environmental water to form an admixture, and pumping the admixture through the wellbore at a rate and pressure sufficient to treat the subterranean formation. The viscosity of the admixture increases after the at least one divalent cation, the viscosifying amount of polymer and the environmental water are admixed. Such viscosity increase may be at least about 5% over at least a 10 minute period after the admixture is prepared. The divalent cation(s) may be selected from the group consisting of barium, calcium, copper(II), iron(II), magnesium, manganese(II), strontium, tin(II), zinc, and mixtures thereof. Further, the divalent cation(s) may be provided in the form of a salt with one or more anions selected from acetate, bicarbonate, nitrate, chloride, bromide, iodide, sulfate ion, and mixtures thereof.
Abstract:
Methods of treating a subterranean formation penetrated by a wellbore include providing environmental water, admixing a viscosifying amount of a polymer and at least one divalent cation with the environmental water to form an admixture, and pumping the admixture through the wellbore at a rate and pressure sufficient to treat the subterranean formation. The viscosity of the admixture increases after the at least one divalent cation, the viscosifying amount of polymer and the environmental water are admixed. Such viscosity increase may be at least about 5% over at least a 10 minute period after the admixture is prepared. The divalent cation(s) may be selected from the group consisting of barium, calcium, copper(II), iron(II), magnesium, manganese(II), strontium, tin(II), zinc, and mixtures thereof. Further, the divalent cation(s) may be provided in the form of a salt with one or more anions selected from acetate, bicarbonate, nitrate, chloride, bromide, iodide, sulfate ion, and mixtures thereof.
Abstract:
A well treatment fluid is disclosed containing water, a crosslinkable component, a crosslinker; and an enzyme breaker containing a cellulase enzyme, the well treatment fluid having a total dissolved solids content of at least about 75,000 mg/L up to about 250,000 mg/L. A method of treating a subterranean formation is also disclosed including placing the well treatment fluid in the subterranean formation. It is also disclosed that the well treatment fluid can be a combination of a first fluid including water, the crosslinkable component, the crosslinker, and the enzyme breaker, and having a total dissolved content A with formation water having a total dissolved content B which is higher than the total dissolved content A of the first fluid.
Abstract:
A method of treating a subterranean formation, the method including placing a well treatment fluid comprised of at least an enzyme and a breaker additive in the subterranean formation. Initially, the pH of the well treatment fluid is about 11.5. The breaker additive reduces the pH of the well treatment fluid by at least 1.5 to increase the activity of enzyme and accelerate hydrolysis of a crosslinkable component.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore includes introducing a treatment fluid comprised at least a crosslinkable component, and a metal crosslinker to the subterranean formation, forming a crosslinked treatment fluid, and de-crosslinking bonds of the crosslinked treatment fluid by manipulating a pH of the treatment fluid with a pH triggering agent, wherein the pH triggering agent is an amine-precursor compound or a derivative thereof.
Abstract:
Embodiments herein relate to a method of forming a fluid including controlling the pH of the water, wherein the pH after controlling is 4.0 to 7.5, introducing a polymer comprising guar to the water to form a fluid, introducing a crosslinker comprising zirconium a group 4 metal to the fluid, and observing the viscosity of the fluid, wherein the viscosity is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker. In some embodiments, the water is collected from an oil field services water treatment facility, pond, or truck. Embodiments herein relate to a method of forming a fluid including analyzing water for pH wherein the water comprises a salinity of 300 ppm or greater, controlling the pH of the water, wherein the pH after controlling is 4.5 to 8.0, introducing a polymer to the water to form a fluid, introducing a crosslinker to the fluid, and observing the viscosity, wherein the viscosity is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker is at least 80 cP at 100 s-1 in the first half-hour after introducing the crosslinker.
Abstract:
Fluids including a parylene-coated chemical entity and methods of treating a subterranean formation with such fluids are disclosed. The methods may include introducing a treatment fluid into a subterranean formation, the treatment fluid containing a parylene-coated particle having a chemical entity encapsulated therein.
Abstract:
A method of treating a subterranean formation penetrated by a wellbore includes introducing a treatment fluid comprised at least a crosslinkable component, and a metal crosslinker to the subterranean formation, forming a crosslinked treatment fluid, and de-crosslinking bonds of the crosslinked treatment fluid by manipulating a pH of the treatment fluid with a pH triggering agent, wherein the pH triggering agent is an amine-precursor compound or a derivative thereof.
Abstract:
Disclosed are compositions and methods for treating subterranean formations, in particular, oilfield stimulation compositions and methods using polymer viscosified fluid crosslinked with metal complexes with amino and/or phosphonic acids to provide an increased crosslinking temperature and a low pH sensitivity. The metal complexes can be used with borate crosslinkers to provide continuous viscosification as the temperature is increased.