Abstract:
A feed-through, in particular a feed-through which passes through a housing component of a housing, for example a battery housing, such as a battery cell housing. The housing component includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, is guided. The pin-shaped conductor is at least partially surrounded by an insulator, for example made of a glass or a glass ceramic material. The at least one conductor connection, for example of the essentially pin-shaped conductor and/or of the housing component with the insulator, which is a glass or a glass ceramic material, is formed, the connection being an ultrasonic welding.
Abstract:
The disclosure relates to a bond produced with an at least partially crystallized glass, such as a metal-to-glass bond, in particular a metal-to-glass bond in a feed-through element or connecting element, and to a method for producing such a bond, in particular in a feed-through element or connecting element. The at least partially crystallized glass includes at least one crystal phase and pores which are distributed in the at least partially crystallized glass in a structured manner.
Abstract:
An additive for electrochemical energy storages is disclosed, wherein the additive contains at least one silicon- and alkaline earth metal-containing compound V1 which in contact with a fluorine-containing compound V2 in the energy storage forms at least one compound V3 selected from the group consisting of silicon- and fluorine-containing, lithium-free compounds V3a, alkaline earth metal- and fluorine-containing, lithium-free compounds V3b, silicon-, alkaline earth metal- and fluorine-containing, lithium-free compounds V3c and combinations thereof. Also disclosed is an electrochemical energy storage containing the additive.
Abstract:
An alkali borosilicate glass is provided that includes: SiO270-86 wt % Al2O30-5 wt % B2O39.0-25 wt % Na2O0.5-5.0 wt % K2O0-1.0 wt %, and Li2O0-1.0 wt %. The proportions of the components are chosen in such a way that the weighted crosslinking index, that is, the mean number n of constraints per atom has a value greater than 2.9.
Abstract:
A feed-through includes at least one main body which has at least one opening through which at least one conductor in an electrically insulating material comprising or consisting of a sealing glass is fed, wherein the main body comprises or consists of a light metal and/or a light metal alloy, with an integral bond being formed between the light metal and/or the conductor and the sealing glass, wherein the sealing glass comprises or consists of a titanate glass and has only a small phosphate proportion.
Abstract:
A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body and is hermetically sealed with the housing part such that the helium leakage rate is smaller than 1*10−8 mbar l/sec.
Abstract:
An additive for electrochemical energy storages is disclosed, wherein the additive contains at least one silicon- and alkaline earth metal-containing compound V1 which in contact with a fluorine-containing compound V2 in the energy storage forms at least one compound V3 selected from the group consisting of silicon- and fluorine-containing, lithium-free compounds V3a, alkaline earth metal- and fluorine-containing, lithium-free compounds V3b, silicon-, alkaline earth metal- and fluorine-containing, lithium-free compounds V3c and combinations thereof. Also disclosed is an electrochemical energy storage containing the additive.
Abstract:
A feed-through has a base body, for example in the form of a disk-shaped metal part. The base body includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body includes a material having a low melting point, such as a light metal, and the glass or glass ceramic material is selected in such a manner that the melting temperature thereof is lower than the melting temperature of the material of the base body.
Abstract:
An at least partially crystallized glass includes at least one crystal phase and pores which are distributed in the at least partially crystallized glass in a structured manner.
Abstract:
The invention relates to a radiopaque glass having a refractive index nd of 1.480 to 1.561, this glass, apart from impurities at most, being free from SrO and PbO. The glass is based on the SiO2, Al2O3 and B2O3 system. The radiopacity can be adjusted using Cs2O in particular in combination with BaO and/or SnO2 optionally in conjunction with fluorine. The glass may be used in particular as dental glass or as optical glass.