Abstract:
The present invention provides a structure of a pixel, which includes an array substrate (10), a color filter substrate (20), and a liquid crystal layer (30) between the array substrate (10) and the color filter substrate (20). The array substrate (10) includes a first substrate (11), a data line (12) and a gate line (13) arranged on the first substrate (11), and a pixel unit (14). The pixel unit (14) includes a thin-film transistor (15) and a pixel electrode (16). The thin-film transistor (15) is electrically connected to the data line (12), the gate line (13), and the pixel electrode (16). The color filter substrate (20) includes a second substrate (21) and a common electrode (22) arranged on the second substrate (21). The common electrode (22) and the pixel electrode (16) have a first overlapping portion (23), which forms a first storage capacitor of the pixel unit (14).
Abstract:
The present invention provides a structure of a pixel, which includes an array substrate (10), a color filter substrate (20), and a liquid crystal layer (30) between the array substrate (10) and the color filter substrate (20). The array substrate (10) includes a first substrate (11), a data line (12) and a gate line (13) arranged on the first substrate (11), and a pixel unit (14). The pixel unit (14) includes a thin-film transistor (15) and a pixel electrode (16). The thin-film transistor (15) is electrically connected to the data line (12), the gate line (13), and the pixel electrode (16). The color filter substrate (20) includes a second substrate (21) and a common electrode (22) arranged on the second substrate (21). The common electrode (22) and the pixel electrode (16) have a first overlapping portion (23), which forms a first storage capacitor of the pixel unit (14).
Abstract:
A liquid crystal display (LCD) panel includes a plurality of pixels, scan lines, data lines crisscrossing with the scan lines, a data driving unit that drives the data lines, an overvoltage driving unit coupled to the data driving unit, a data analysis unit coupled to the overvoltage driving unit and reading gray level of each of sub-pixels, an original overvoltage driving table, and a first overvoltage driving table. Each of the pixels belonging to a same column receives data of a same data line, and each of the pixels includes three sub-pixels controlled by three adjacent scan lines one by one. The original overvoltage driving table and the first overvoltage driving table are coupled to the data analysis unit. When an input signal driving the first overvoltage driving table is same as an input signal driving the original overvoltage driving table, partial voltages driving the data lines and corresponding to the first overvoltage driving table is greater than voltage driving the data lines and corresponding to the original overvoltage driving table. In a same frame image, when gray level of a current sub-pixel is greater than gray level of a previous sub-pixel of a same data line with the current sub-pixel, and gray level difference between the two sub-pixels is greater than a first threshold value, the overvoltage driving unit drives the current sub-pixel according to the first overvoltage driving table.
Abstract:
A liquid crystal display panel and a method for manufacturing the same are disclosed. The liquid crystal display panel comprises a data driving module; data lines arranged in an active area in parallel with one another; and data wirings arranged in a fanout area, one end of each data wiring being connected with an output end of said data driving module, the other end thereof being connected with a data line of said active area, wherein the data lines in said active area are arranged to have different widths.
Abstract:
A liquid crystal display and a method for manufacturing the liquid crystal display are provided. The liquid crystal display comprises a first substrate and a second substrate that are spaced apart from each other, and spacers disposed between the first substrate and the second substrate and in contact with the first substrate and the second substrate. Elevating layers are disposed on the second substrate and in contact with the spacers, and each of the elevating layers is structured with a cross section including a laterally extending portion and a longitudinally extending portion. According to the present disclosure, the problem of moving mura of the liquid crystal display can be significantly alleviated.
Abstract:
The present invention provides a display panel and a wiring structure thereof. The wiring structure comprises a plurality of metal wires extending across a first wiring region, a second wiring region, and a third wiring region. The first wiring region adjoins the second wiring region. The second wiring region adjoins the third wiring region. A line width of an nth metal wire in the second wiring region is a, and a distance between the nth metal wire and an n+1th metal wire is b, where n≧1. When n is taken as different values, a/(a+b) is a constant value. According to the above method, the coverage ratio in the seal coating region by the metal wires is not changed to avoid the problem of uneven curing of the sealant. The performance stability of the display panel is thus not impacted.
Abstract:
The present invention discloses an array substrate and a liquid crystal display panel. In the array substrate, each pixel unit has a first pixel area, a second pixel area, and a third pixel area. The voltage applied at the first pixel area is Va. The voltage applied at the second pixel area is Vb, and the voltage applied at the third pixel area is Vc, and the relationship among the voltages is Va>Vb>Vc. Ranges of area ratios of the first pixel area, the second pixel area and the third pixel area to the pixel unit are respectively 5%-25%, 20%-45% and 35%-75%. Therefore, it can reduce the color difference at the large viewing angle to obtain a better low color shift effect and improve the display quality.
Abstract:
A liquid crystal display and a method for manufacturing the liquid crystal display are provided. The liquid crystal display comprises a first substrate and a second substrate that are spaced apart from each other, and spacers disposed between the first substrate and the second substrate and in contact with the first substrate and the second substrate. Elevating layers are disposed on the second substrate and in contact with the spacers, and each of the elevating layers is structured with a cross section including a laterally extending portion and a longitudinally extending portion. According to the present disclosure, the problem of moving mura of the liquid crystal display can be significantly alleviated.
Abstract:
The present invention discloses a color filter substrate and a liquid crystal panel. The color filter substrate includes a substrate a transparent conductive film, a black array, and an auxiliary conductive layer. Wherein the black array is arranged on the substrate and the transparent conductive film is disposed on the black array. Wherein the auxiliary conductive layer is disposed over a surface of the substrate facing the black array, and has at least portions arranged between the substrate and the black array. By these arrangements, the present invention can effectively reduce the brightness interference of the liquid crystal panel, while increasing the adhesion of the auxiliary conductive layer in addition, this arrangement can effectively avoid the damage to the transparent conductive film by the auxiliary conductive layer.
Abstract:
Disclosed here is the technical field of liquid crystal display, and in particular to a color filter and a liquid crystal display with the color filter. The color filter has a plurality of diaphragm groups, each diaphragm group consists of at least one red diaphragm, at least one green diaphragm and at least one blue diaphragm, wherein the diaphragms of at least one of said diaphragm groups are configured in such a sequence that color cast caused by a RC delay of a pixel signal can be compensated.