Abstract:
A MEMS device includes a fixed structure and a mobile structure with a reflecting element coupled to the fixed structure through at least a first deformable structure and a second deformable structure. Each of the first and second deformable structures includes a respective number of main piezoelectric elements, with the main piezoelectric elements of the first and second deformable structures configured to be electrically controlled for causing oscillations of the mobile structure about a first axis and a second axis, respectively. The first deformable structure further includes a respective number of secondary piezoelectric elements configured to be controlled so as to vary a first resonance frequency of the mobile structure about the first axis.
Abstract:
A MEMS device includes a fixed structure and a mobile structure with a reflecting element coupled to the fixed structure through at least a first deformable structure and a second deformable structure. Each of the first and second deformable structures includes a respective number of main piezoelectric elements, with the main piezoelectric elements of the first and second deformable structures configured to be electrically controlled for causing oscillations of the mobile structure about a first axis and a second axis, respectively. The first deformable structure further includes a respective number of secondary piezoelectric elements configured to be controlled so as to vary a first resonance frequency of the mobile structure about the first axis.
Abstract:
A fluid ejection device, comprising: a first semiconductor body including an actuator, which is operatively coupled to a chamber for containing the fluid and is configured to cause ejection of the fluid; and a channel for inlet of the fluid, which extends in a first direction and has a section having a first dimension; and a second semiconductor body, which is coupled to the first semiconductor body and has an ejection nozzle configured to expel the fluid. The second semiconductor body further comprises a first restriction channel, which is fluidically coupled to the inlet channel, extends in a second direction orthogonal to the first direction and has a respective section with a second dimension smaller than the first dimension so as to form a restriction between the inlet channel and the chamber.
Abstract:
A pressure sensor with double measuring scale includes: a flexible body designed to undergo deflection as a function of a the pressure; piezoresistive transducers for detecting the deflection; a first focusing region designed to concentrate, during a first operating condition, a first value of the pressure in a first portion of the flexible body so as to generate a deflection of the first portion of the flexible body; and a second focusing region designed to concentrate, during a second operating condition, a second value of said pressure in a second portion of the flexible body so as to generate a deflection of the second portion of the flexible body. The piezoresistive transducers correlate the deflection of the first portion of the flexible body to the first pressure value and the deflection of the second portion of the flexible body to the second pressure value.
Abstract:
A MEMS actuator includes a semiconductor body with a first surface defining a housing cavity facing the first surface and having a bottom surface, the semiconductor body further defining a fluidic channel in the semiconductor body with a first end across the bottom surface. A strainable structure extends into the housing cavity, is coupled to the semiconductor body at the bottom surface, and defines an internal space facing the first end of the fluidic channel and includes at least a first and a second internal subspace connected to each other and to the fluidic channel. When a fluid is pumped through the fluidic channel into the internal space, the first and second internal subspaces expand, thereby straining the strainable structure along the first axis and generating an actuation force exerted by the strainable structure along the first axis, in an opposite direction with respect to the housing cavity.
Abstract:
A MEMS optical device including: a semiconductor body; a main cavity, which extends within the semiconductor body; a membrane suspended over the main cavity; a piezoelectric actuator, which is mechanically coupled to the membrane and can be electronically controlled so as to deform the membrane; a micro-lens, mechanically coupled to the membrane so as to undergo deformation following the deformation of the membrane; and a rigid optical element, which contacts the micro-lens and is arranged so that the micro-lens is interposed between the rigid optical element and the membrane. The micro-lens and the main cavity are arranged on opposite sides of the membrane.
Abstract:
A MEMS device having a body with a first and a second surface, a first portion and a second portion. The MEMS device further has a cavity extending in the body from the second surface; a deformable portion between the first surface and the cavity; and a piezoelectric actuator arranged on the first surface, on the deformable portion. The deformable portion has a first region with a first thickness and a second region with a second thickness greater than the first thickness. The second region is adjacent to the first region and to the first portion of the body.
Abstract:
A MEMS manipulation device has first and second manipulation arms carrying respective mutually facing gripping elements. At least the first manipulation arm is formed by a driving arm and by an articulated arm hinged together through an articulation structure. The first driving arm includes a first beam element and a first piezoelectric region on the first beam element. The first articulation structure includes a first connecting element not deformable in the thickness direction, as well as a first hinge structure interposed between the first driving arm, the first articulated arm, and the first connecting element.
Abstract:
A microfluidic device, having a containment body accommodating a plurality of ejecting elements arranged adjacent to each other. Each ejecting element has a liquid inlet, a containment chamber, a piezoelectric actuator and an ejection nozzle. The piezoelectric actuators of each ejecting element are connected to a control unit configured to generate actuation signals and to be integrated in the containment body.
Abstract:
A MEMS actuator device of a piezoelectric type formed on a substrate, with a base unit including a base beam element having a main extension in a extension plane and a thickness in a thickness direction perpendicular to the extension plane, smaller than the main extension. A piezoelectric region extends over the beam element. An anchor region is rigid to the base beam element and to the substrate. A base constraint structure is connected to one end of the base beam element and is configured to allow a deformation of the base beam element in the extension plane and substantially reduce a deformation of the base beam element in the thickness direction.