Abstract:
A Hall sensor may include a Hall sensing element configured to produce a Hall voltage indicative of a magnetic field when traversed by an electric current, and a first pair of bias electrodes mutually opposed in a first direction across the Hall sensing element. The Hall sensor may include a second pair of bias electrodes mutually opposed in a second direction across the Hall sensing element. The Hall sensor may include a first pair of sensing electrodes mutually opposed in a third direction across the Hall sensing element, and a second pair of sensing electrodes mutually opposed in a fourth direction across the Hall sensing element. The fourth direction may be orthogonal to the third direction, each sensing electrode being between a bias electrode of the first pair and a bias electrode of the second pair.
Abstract:
A Hall sensor may include a Hall sensing element configured to produce a Hall voltage indicative of a magnetic field when traversed by an electric current, and a first pair of bias electrodes mutually opposed in a first direction across the Hall sensing element. The Hall sensor may include a second pair of bias electrodes mutually opposed in a second direction across the Hall sensing element. The Hall sensor may include a first pair of sensing electrodes mutually opposed in a third direction across the Hall sensing element, and a second pair of sensing electrodes mutually opposed in a fourth direction across the Hall sensing element. The fourth direction may be orthogonal to the third direction, each sensing electrode being between a bias electrode of the first pair and a bias electrode of the second pair.
Abstract:
An asynchronous level shifter electronic circuit including: a transmitter, which can be coupled to a first voltage and generates a communication signal; a receiver, which can be coupled to a second voltage; and a capacitive coupling stage, which receives the communication signal and supplies a corresponding filtered signal to the receiver. The receiver includes: a threshold device, which has an input terminal and an output terminal and switches an electrical quantity on the output terminal between a first value and a second value, as a function of corresponding transitions through a threshold of a first intermediate signal present on the input terminal, to generate a second intermediate signal; and a biasing circuit, which generates the first intermediate signal to have a d.c. component, which is a function of the second intermediate signal, and superposed on which is a variable component, which is a function of the filtered signal.