Abstract:
A bandgap circuit includes a supply node as well as a first and second bipolar transistors having jointly coupled base terminal at a bandgap node providing a bandgap voltage. First and second current generators are coupled to the supply node and supply mirrored first and second currents, respectively, to first and second circuit nodes. A third circuit node is coupled to the first bipolar transistor via a first resistor and coupled to ground via a second resistor, respectively. The third circuit node is also coupled to the second bipolar transistor so that the second resistor is traversed by a current which is the sum of the currents through the bipolar transistors. A decoupling stage intermediate the current generators and the bipolar transistors includes first and second cascode decoupling transistors having jointly coupled control terminals receiving a bias voltage sensitive to the bandgap voltage.
Abstract:
A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Abstract:
A circuit includes an input transistor pair with first and second input transistors, the first input transistor having a control terminal configured to receive an input signal and a cascode transistor pair including a first and second cascode transistors having a common control node. A bias circuit has a bias input configured to receive the input signal and a first bias output coupled to the common node of the first and second cascode transistors. The bias circuit includes a signal tracking circuit operating to generate the first bias output to track the input signal. A pair of load transistors are coupled to the input transistor pair and biased by a second bias output of the bias circuit.
Abstract:
A DC-DC boost converter includes an input receiving an input voltage and an output producing an output voltage. A switching stage is formed by a low-side transistor arranged between a switching node and a ground node, and a high-side transistor arranged between the switching node and the output. The high-side transistor includes a body diode having an anode coupled to the switching node and a cathode coupled to the output. The converter is controlled in an asynchronous operation mode where the low-side transistor is driven alternately to a conductive state and a non-conductive state, and the high-side transistor is driven steadily to a non-conductive state. A variable load circuit is selectively coupled between the two output terminals when the converter is in the asynchronous operation mode in order to sink a load current having a value that is a function of a value of the input voltage.
Abstract:
A multiphase DC-DC converter has two converter arrangements, each with a switching stage that has a switching node, an inductor, a converter output node, a high-side switch, and a low-side switch. Current sensing circuits detect the instantaneous current flowing through either the high-side or low-side switches, and signal time-averaging circuits produce time-averaged signals indicating the average current during a switch conduction interval. The time-averaged signals are added up and re-scaled based on the time period of the switching nodes' electrical coupling to the converter output nodes to generate an output signal for the average output current.
Abstract:
A control circuit operates to control a switching stage of an electronic converter. The control circuit includes: first terminals providing drive signals to electronic switches of the switching stage; a second terminal receiving from a feedback circuit a first feedback signal proportional to a converter output voltage; and a third terminal configured to receive from a current sensor a second feedback signal proportional to an inductor current. A driver circuit provides the drive signals as a function of a PWM signal generated by a generator circuit as a function of the first and second feedback signals, a reference voltage and a slope compensation signal. A mode selection signal is generated as a function of a comparison between the input voltage and the output voltage. A feed-forward compensation circuit is configured to source and/or sink a compensation current as a function of a variation in the mode selection signal.
Abstract:
A switching amplifier, such as a Class D amplifier, includes a current sensing circuit. The current sensing circuit is formed by replica loop circuits that are selectively coupled to corresponding output inverter stages of the switching amplifier. The replica loop circuits operated to produce respective replica currents of the output currents generated by the output inverter stages. A sensing circuitry is coupled to receive the replica currents from the replica loop circuits and operates to produce an output sensing signal as a function of the respective replica currents.
Abstract:
An electrical-energy harvesting system envisages a transducer for converting energy from an environmental energy source into a transduced signal, an electrical energy harvesting interface for receiving the transduced signal and for supplying a harvesting signal, and an energy storage element coupled to the electrical energy harvesting interface for receiving the harvesting signal. The electrical-energy harvesting system also includes a voltage converter connected to the electrical energy harvesting interface for generating a regulated voltage. The harvesting interface samples an open-circuit voltage value of the transduced signal, generates an optimized voltage value starting from the open-circuit voltage value, and generates an upper threshold voltage and a lower threshold voltage on the basis of the optimized voltage value. The harvesting interface controls the voltage converter in switching mode so that the harvesting signal has a value between the upper and lower threshold voltages in at least one operating condition.