Abstract:
One embodiment discloses a method for soldering a cap for an integrated electronic device to a support layer, including the steps of: providing a support layer; providing a cap including a core of a first material and a coating layer of a second material, the first and second material being respectively wettable and non-wettable with respect to a solder, the coating layer being arranged so as to expose a surface of the core; coupling the cap with the support layer; and soldering the surface of the core to the support layer, by means of the solder.
Abstract:
A surface mount package of a semiconductor device, has: an encapsulation, housing at least one die including semiconductor material; and electrical contact leads, protruding from the encapsulation to be electrically coupled to contact pads of a circuit board; the encapsulation has a main face designed to face a top surface of the circuit board, which is provided with coupling features designed for mechanical coupling to the circuit board to increase a resonant frequency of the mounted package. The coupling features envisage at least a first coupling recess defined within the encapsulation starting from the main face, designed to be engaged by a corresponding coupling element fixed to the circuit board, thereby restricting movements of the mounted package.
Abstract:
A packaged MEMS device, wherein at least two support structures are stacked on each other and are formed both by a support layer and a wall layer coupled to each other and delimiting a respective chamber. The chamber of the first support structure is upwardly delimited by the support layer of the second support structure. A first and a second dice are accommodated in a respective chamber, carried by the respective support layer of the first support structure. The support layer of the second support structure has a through hole allowing wire connections to directly couple the first and the second dice. A lid substrate, coupled to the second support structure, closes the chamber of the second support structure.