Abstract:
Provided are a liquid crystal display panel and a manufacturing method thereof, and more particularly, a liquid crystal display panel including white pixels and a manufacturing method thereof. The liquid crystal display panel includes: a first substrate and a second substrate facing each other; a liquid crystal layer positioned between the first substrate and the second substrate; a plurality of color filters positioned on the first substrate and representing different colors from each other, in which at least two of the plurality of color filters overlap with each other on the first substrate to form an overlapping portion, and the overlapping portion forms a first spacer; a transparent filter positioned on the first substrate and positioned in a transmitting area of a white pixel; and a second spacer including the same material as the transparent filter.
Abstract:
A liquid crystal display includes a pixel that includes a first sub-pixel chargeable with a first voltage and a second sub-pixel chargeable with a second voltage different from the first voltage, a pixel electrode that includes a first sub-pixel electrode in the first sub-pixel and a second sub-pixel electrode in the second sub-pixel, a common electrode that faces the pixel electrode, and a liquid crystal layer between the pixel electrode and the common electrode. The first sub-pixel electrode includes a first trunk portion and a plurality of first branch portions protruding from and extending from one side of the first trunk portion. The second sub-pixel electrode includes a second trunk portion and a plurality of second and third branch portions that protrude from both sides of the second trunk portion and extend substantially parallel to the first branch portions.
Abstract:
A thin film transistor array panel includes a substrate, a gate line extending in a first direction on the substrate, a data line extending in a second direction on the substrate and intersecting the gate line, a thin film transistor connected to the gate line and the data line, an insulating layer on the gate line, the data line, and the thin film transistor, a first auxiliary line on the insulating layer and connected to the gate line, a second auxiliary line on the insulating layer and connected to the data line, and a pixel electrode connected to the thin film transistor.
Abstract:
A display device includes: a first pixel including a first light emitting diode (LED) and a first capacitor including a first electrode connected to a first power source voltage providing a driving voltage to an anode of the first light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the first light emitting diode (LED); and a second pixel including a second light emitting diode (LED) and a second capacitor including a first electrode connected to the first power source voltage providing the driving voltage to an anode of the second light emitting diode (LED) or to an initialization voltage, and a second electrode connected to the anode of the second light emitting diode (LED), wherein capacitance of the second capacitor is less than capacitance of the first capacitor.
Abstract:
An organic light emitting display device includes a plurality of pixels. Each of the pixels includes an organic light emitting diode, first to third transistors, a storage capacitor, and a first capacitor. The second transistor includes a gate electrode receiving a first scan signal, a first electrode receiving a data signal, and a second electrode connected to a first electrode of the first transistor. The third transistor includes a gate electrode receiving a second scan signal, a first electrode connected to a second electrode of the first transistor, and a second electrode connected to a gate electrode of the first transistor. The storage capacitor includes a first electrode receiving a power voltage and a second electrode connected to the gate electrode of the first transistor. The first capacitor includes a first electrode connected to the gate electrode of the third transistor and a second electrode receiving the power voltage.
Abstract:
An organic light emitting display device includes a plurality of pixels. Each of the pixels includes an organic light emitting diode, first to third transistors, a storage capacitor, and a first capacitor. The second transistor includes a gate electrode receiving a first scan signal, a first electrode receiving a data signal, and a second electrode connected to a first electrode of the first transistor. The third transistor includes a gate electrode receiving a second scan signal, a first electrode connected to a second electrode of the first transistor, and a second electrode connected to a gate electrode of the first transistor. The storage capacitor includes a first electrode receiving a power voltage and a second electrode connected to the gate electrode of the first transistor. The first capacitor includes a first electrode connected to the gate electrode of the third transistor and a second electrode receiving the power voltage.
Abstract:
A liquid crystal display includes a first substrate including first to fourth color pixel areas, first to fourth thin film transistors disposed on the first substrate, and first to fourth pixel electrodes connected to the first to fourth thin film transistors. Each of the first to fourth pixel electrodes includes a cross stem portion including a horizontal stem portion and a vertical stem portion crossing the horizontal stem portion, and minute branch portions extending from the cross stem portion at a predetermined angle with respect to a horizontal direction. A third angle of the minute branch portions of the third pixel electrode is greater than each of first and second angles of the minute branch portions of the respective first and second pixel electrodes. Each of the first and second angles is greater than a fourth angle of the minute branch portions of the fourth pixel electrode.
Abstract:
A liquid crystal display device that allows efficient luminance control is presented. The device includes: first, second, and third color pixel areas; a first substrate and a second substrate; a first color filter disposed in the first color pixel area on the first substrate or the second substrate; a second color filter disposed in the second color pixel area on the first substrate or the second substrate; a third color filter disposed in the third color pixel area on the first substrate or the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first color pixel area includes a first transparent region at which the first color filter is not disposed, and a ratio of the first transparent region of the first color pixel area to the first color pixel area is in a range of 1/1000 to 1/2, inclusive.
Abstract:
According to an embodiment, a display apparatus includes gate lines extending in a first direction, data lines extending in a second direction crossing the first direction, and pixels connected to the gate lines and the data lines. The pixels include pixels arranged in a k-th row and pixels arranged in a (k+1)th row disposed adjacent to the pixels arranged in the k-th row in the second direction. An (i+1)th gate line is disposed between the pixels in the k-th row and the pixels in the (k+1)th row. A first pixel arranged in a g-th column among the pixels arranged in the k-th row and a second pixel arranged in the g-th column among the pixels arranged in the (k+1)th row are connected to a j-th data line. The pixels arranged in the k-th row are alternately connected to an i-th gate line and the (i+1)th gate line.
Abstract:
A display substrate includes a first switching element electrically connected to a gate line and that extends in a first direction and electrically connected to a data line that extends in a second direction crossing the first direction, an insulation layer disposed on the first switching element, a shielding electrode disposed on the insulation layer and a pixel electrode that partially overlap the shielding electrode. The shielding electrode includes a first portion that overlaps the data line and extends in the second direction and a second portion that overlaps the gate line and extends in the first direction.