Abstract:
An organic light emitting display including a first substrate and a second substrate is described. The first substrate has a pixel divided into a light emitting area and a non-light emitting area. The first substrate has an organic light emitting diode disposed in the light emitting area. The second substrate has an infrared sensor disposed corresponding to the non-light emitting area. In the organic light emitting display, the organic light emitting diode emits visible light and infrared light, and the infrared sensor is disposed corresponding to the non-light emitting area.
Abstract:
An organic light emitting display device and a method of manufacturing an organic light emitting display device are disclosed. The organic light emitting display device includes a first substrate, on which a display region and a non-display region surrounding the display region are defined, a second substrate disposed opposite to the first substrate, an organic light emitting element disposed in the display region between the first substrate and the second substrate, a third substrate disposed opposite to the second substrate, and a microphone disposed between the second substrate and the third substrate.
Abstract:
Provided is a method of manufacturing a capacitor of a display apparatus, the display apparatus being formed on a substrate and including a thin film transistor, which includes an active layer, a gate electrode, and source and drain electrodes, a display device connected to the thin film transistor, and the capacitor, the method including: forming an electrode layer on the substrate; forming a passivation layer on the electrode layer; patterning the passivation layer to form a first pattern including first branch patterns parallel to each other, and a second pattern including second branch patterns parallel to each other and interposed between the first branch patterns; and forming first and second electrodes by etching the electrode layer using the first and second patterns as masks.
Abstract:
A display apparatus is disclosed. In one aspect the apparatus includes a touch panel, an information processor, a memory and a display panel. The touch panel generates a current touch signal including a current touch position of a touch. The information processor receives the current touch signal from the touch panel and a stored touch signal to compare the stored touch signal with the current touch signal to generate dynamic luminance information. The memory receives the current touch signal from the information processor to store the current touch signal as the stored touch signal. The display panel receives the dynamic luminance information from the information processor to display an image having different luminances in an emphasizing region corresponding to the current touch signal and the stored touch signal and a background region surrounding the emphasizing region, respectively.
Abstract:
An organic light emitting display device and a method of manufacturing an organic light emitting display device are disclosed. The organic light emitting display device includes a first substrate, on which a display region and a non-display region surrounding the display region are defined, a second substrate disposed opposite to the first substrate, an organic light emitting element disposed in the display region between the first substrate and the second substrate, a third substrate disposed opposite to the second substrate, and a microphone disposed between the second substrate and the third substrate.
Abstract:
An organic light emitting diode display is disclosed In one aspect, the display includes a display panel, a grid layer positioned on the display panel, wherein the grid layer includes a plurality of protrusions formed of a first protrusion and a second protrusion formed on a surface of the first protrusion, and a window positioned on the grid layer.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
An organic light emitting diode display is disclosed In one aspect, the display includes a display panel, a grid layer positioned on the display panel, wherein the grid layer includes a plurality of protrusions formed of a first protrusion and a second protrusion formed on a surface of the first protrusion, and a window positioned on the grid layer.
Abstract:
An organic light-emitting display apparatus includes: a first substrate; a display unit on the first substrate, the display unit being divided into a pixel unit and a non-pixel unit located around the pixel unit; a first electrode having an island shape to correspond to the pixel unit; a second electrode facing the first electrode and over the pixel unit and the non-pixel unit; an organic light-emitting layer between the first electrode and the second electrode and to emit light toward the second electrode; a second substrate facing the second electrode and bonded with the first substrate; and a light output unit arranged as a part corresponding to the pixel unit and a light reflection unit arranged as a part corresponding to the non-pixel unit, wherein the light output unit and the light reflection unit are on an internal surface of the second substrate facing the second electrode.
Abstract:
Provided is a method of manufacturing a capacitor of a display apparatus, the display apparatus being formed on a substrate and including a thin film transistor, which includes an active layer, a gate electrode, and source and drain electrodes, a display device connected to the thin film transistor, and the capacitor, the method including: forming an electrode layer on the substrate; forming a passivation layer on the electrode layer; patterning the passivation layer to form a first pattern including first branch patterns parallel to each other, and a second pattern including second branch patterns parallel to each other and interposed between the first branch patterns; and forming first and second electrodes by etching the electrode layer using the first and second patterns as masks.