Abstract:
An optical apparatus for non-invasively measuring a bio-signal is provided. The optical apparatus may include an interface housing including: a guide part defined by an interior space of the interface housing and configured to guide an object to a measurement position; and a pressurizing part configured to induce congestion of a second portion of the object by pressing a first portion of the object when the object is disposed within the guide part; and a measurer including: a light source provided on an upper side of the interface housing and configured to emit light to the second portion of the object when the object is at the measurement position; and a detector configured to measure a bio-signal from the second portion by detecting light scattered or reflected from the second portion.
Abstract:
An electronic device may include: a heat flux sensor including: a first temperature sensor configured to measure a first voltage representing a first temperature; a second temperature sensor spaced apart from the first temperature sensor and configured to measure a second voltage representing a second temperature; and an amplifier configured to amplify a voltage difference between the first voltage and the second voltage; and a processor configured to estimate a body temperature of a user based on the amplified voltage difference.
Abstract:
An electronic device may include: a first temperature sensor configured to measure a first temperature of body skin; a second temperature sensor configured to measure a second temperature at a position spaced apart from the body skin; and a processor configured to estimate skin heat loss based on the first temperature and the second temperature, and to determine a target ambient temperature for controlling an ambient temperature based on the first temperature and the skin heat loss.
Abstract:
A semi-permeable membrane may include a support layer and an active layer in contact with the support layer. The support layer includes a porous structure including a polymer and at least one metal (or metalloid) oxide in the porous structure. In the support layer, the amount of the metal (or metalloid) oxide present in a portion adjacent to the active layer is higher than the amount of the metal (or metalloid) oxide present in a portion farther from the active layer.
Abstract:
An ion exchanger according to a non-limiting embodiment may include an open cell polymer support and a microporous polymer matrix charged within the open cell polymer support. The microporous polymer matrix includes an ion conductive polymer. The ion conductive polymer may be obtained by polymerizing monomers having at least one ion exchange functional group and at least one cross-linkable functional group with a cross-linking agent having at least two cross-linkable functional groups.