Abstract:
An integrated circuit device includes a memory including a memory cell insulation surrounding a memory stack and a memory cell interconnection unit, a peripheral circuit including a peripheral circuit region formed on a peripheral circuit board, and a peripheral circuit interconnection between the peripheral circuit region and the memory structure, a plurality of conductive bonding structures on a boundary between the memory cell interconnection and the peripheral circuit interconnection in a first region, the first region overlapping the memory stack in a vertical direction, and a through electrode penetrating one of the memory cell insulation and the peripheral circuit board and extended to a lower conductive pattern included in the peripheral circuit interconnection in a second region, the second region overlapping the memory cell insulation in the vertical direction.
Abstract:
A vertical memory device is provided. The vertical memory device includes gate electrodes formed on a substrate and spaced apart from each other in a first direction substantially perpendicular to an upper surface of the substrate, the gate electrodes including a first gate electrode and a second gate electrode that is interposed between the first gate electrode and the substrate; a channel extending through the gate electrodes in the first direction; an insulating isolation pattern extending through the first gate electrode in the first direction, and spaced apart from the first gate electrode in a second direction substantially parallel to the upper surface of the substrate; and a blocking pattern disposed on an upper surface, a lower surface and a sidewall of each of the gate electrodes, the sidewall of the gate electrodes facing the channel. The insulating isolation pattern directly contacts the first gate electrode.
Abstract:
A nonvolatile memory device is provided which includes a cell array including a plurality of memory cells; a page buffer unit including a plurality of page buffers and configured to sense whether programming of selected memory cells is completed, at a program verification operation; and a control logic configured to provide a set pulse for setting data latches of each of the page buffers to a program inhibit state according to the sensing result, wherein the control logic provides the set pulse to at least two different page buffers such that data latches of the at least two different page buffers are set.
Abstract:
A memory device comprises a peripheral circuit region including a first substrate and circuit elements on the first substrate, the circuit elements including a row decoder, and a memory cell region including a cell array region and a cell contact region, wherein the cell array region includes wordlines, stacked on a second substrate on the peripheral circuit region, and channel structures extending in a direction perpendicular to an upper surface of the second substrate and penetrating the wordlines, wherein the cell contact region includes cell contacts connected to the wordlines and on both sides of the cell array region in a first direction parallel to the upper surface of the second substrate, the cell contacts including a first cell contact region and a second cell contact region, the first and second cell contact regions having different lengths to each other in the first direction, wherein each of the first and second cell contact regions includes first pads having different lengths than each other in the first direction, and second pads different from the first pads, wherein the cell contacts are connected to the wordlines in the first pads, wherein the number of the second pads included in the first cell contact region is greater than the number of the second pads included in the second cell contact region, and wherein the memory cell region includes a first metal pad and the peripheral circuit region includes a second metal pad, and the memory cell region and the peripheral circuit region are vertically connected to each other by the first metal pad and the second metal pad.
Abstract:
An integrated circuit device includes a memory including a memory cell insulation surrounding a memory stack and a memory cell interconnection unit, a peripheral circuit including a peripheral circuit region formed on a peripheral circuit board, and a peripheral circuit interconnection between the peripheral circuit region and the memory structure, a plurality of conductive bonding structures on a boundary between the memory cell interconnection and the peripheral circuit interconnection in a first region, the first region overlapping the memory stack in a vertical direction, and a through electrode penetrating one of the memory cell insulation and the peripheral circuit board and extended to a lower conductive pattern included in the peripheral circuit interconnection in a second region, the second region overlapping the memory cell insulation in the vertical direction.
Abstract:
The disclosure relates to a wireless charging device including a cooling fan, and the wireless charging device according to an embodiment of the disclosure includes: a housing including a holding portion configured to hold an external electronic device; a first bracket positioned in the holding portion; a conductive coil disposed in the first bracket; a second bracket positioned in the holding portion and including a penetrating hole; a first cooling fan positioned in the penetrating hole; a second cooling fan positioned in the penetrating hole and spaced apart from the first cooling fan; and a partition formed in the penetrating hole to isolate the first cooling fan and the second cooling fan from each other, the penetrating hole being divided into a first area having the first cooling fan disposed therein and a second area having the second cooling fan positioned therein, at least one protrusion having a volute shape formed on at least a portion of the second bracket or at least a portion of the partition, a first opening formed on at least an area of the first bracket to allow air cooled by the first cooling fan and/or the second cooling fan to move to the holding portion, and a second opening formed on at least an area of the holding portion to allow the air transmitted from the first opening to move outside the wireless charging device.
Abstract:
A nonvolatile memory device includes a memory cell region including first metal pads, and a peripheral circuit region including second metal pads. The memory cell region includes a vertical structure including pairs of a first insulating layer and a first conductive layer, a second insulating layer on the vertical structure, a second conductive layer and a third conductive layer spaced apart from each other on the second insulating layer, first vertical channels and second vertical channels. The second conductive layer and the third conductive layer are connected with a first through via penetrating the vertical structure and a region of the second insulating layer that is exposed between the second conductive layer and the third conductive layer. The peripheral circuit region is vertically connected to the memory cell region by the first metal pads and the second metal pads directly.
Abstract:
An integrated circuit device includes a memory including a memory cell insulation surrounding a memory stack and a memory cell interconnection unit, a peripheral circuit including a peripheral circuit region formed on a peripheral circuit board, and a peripheral circuit interconnection between the peripheral circuit region and the memory structure, a plurality of conductive bonding structures on a boundary between the memory cell interconnection and the peripheral circuit interconnection in a first region, the first region overlapping the memory stack in a vertical direction, and a through electrode penetrating one of the memory cell insulation and the peripheral circuit board and extended to a lower conductive pattern included in the peripheral circuit interconnection in a second region, the second region overlapping the memory cell insulation in the vertical direction.
Abstract:
A memory device comprises a peripheral circuit region including a first substrate and circuit elements on the first substrate, the circuit elements including a row decoder, and a memory cell region including a cell array region and a cell contact region, wherein the cell array region includes wordlines, stacked on a second substrate on the peripheral circuit region, and channel structures extending in a direction perpendicular to an upper surface of the second substrate and penetrating the wordlines, wherein the cell contact region includes cell contacts connected to the wordlines and on both sides of the cell array region in a first direction parallel to the upper surface of the second substrate, the cell contacts including a first cell contact region and a second cell contact region, the first and second cell contact regions having different lengths to each other in the first direction, wherein each of the first and second cell contact regions includes first pads having different lengths than each other in the first direction, and second pads different from the first pads, wherein the cell contacts are connected to the wordlines in the first pads, wherein the number of the second pads included in the first cell contact region is greater than the number of the second pads included in the second cell contact region, and wherein the memory cell region includes a first metal pad and the peripheral circuit region includes a second metal pad, and the memory cell region and the peripheral circuit region are vertically connected to each other by the first metal pad and the second metal pad.
Abstract:
A program method of a nonvolatile memory device includes loading first word line data to be stored in first memory cells connected to a first word line and second word line data to be stored in second memory cells connected to a second word line; setting up upper bit lines according to the first word line data; turning off bit line sharing transistors after the upper bit lines are set up; setting up lower bit lines according to the second word line data; performing a first program operation on the first memory cells using the upper bit lines; turning on the bit line sharing transistors; and performing a second program operation on the second memory cells using the lower bit lines. The bit line sharing transistors electrically connect the upper bit lines and the lower bit lines in response to a bit line sharing signal.