Abstract:
Disclosed are a video encoding method and apparatus and a video decoding method and apparatus. The method of encoding video includes: producing a first predicted coding unit of a current coding unit, which is to be encoded; determining whether the current coding unit comprises a portion located outside a boundary of a current picture; and producing a second predicted coding unit is produced by changing a value of pixels of the first predicted coding unit by using the pixels of the first predicted coding unit and neighboring pixels of the pixels when the current coding unit does not include a portion located outside a boundary of the current picture. Accordingly, a residual block that is the difference between the current encoding unit and the second predicted encoding unit, can be encoded, thereby improving video prediction efficiency.
Abstract:
A video encoding method and apparatus, and a video decoding method and apparatus for generating a reconstructed image having a minimized error between an original image and the reconstructed image. The video decoding method accompanied by a sample adaptive offset (SAO) adjustment, the method includes: obtaining 5 slice SAO parameters with respect to a current slice from a slice header of a received bitstream; obtaining luma SAO use information for a luma component of the current slice and chroma SAO use information for chroma components thereof from among the slice SAO parameters; determining whether to perform a SAO operation on the luma component of 10 the current slice based on the obtained luma SAO use information; and equally determining whether to perform the SAO adjustment on a first chroma component and a second chroma component of the current slice based on the obtained chroma SAO use information.
Abstract:
A method for decoding an image including performing intra prediction on a chrominance block according to whether the intra prediction mode of the chrominance block is equal to an intra prediction mode of a luminance block.
Abstract:
Provided is a method of determining an up-sampling filter to accurately interpolate a sample value for each sampling position according to an up-sampling ratio for scalable video encoding and decoding. An up-sampling method for scalable video encoding includes determining a phase shift between a pixel of a low resolution image and a pixel of a high resolution image based on a scaling factor between the high resolution image and the low resolution image; selecting at least one filter coefficient set corresponding to the determined phase shift from filter coefficient data comprising filter coefficient sets corresponding to phase shifts; generating the high resolution image by performing filtering on the low resolution image by using the selected at least one filter coefficient set; and generating an improvement layer bitstream comprising high resolution encoding information generated by performing encoding on the high resolution image and up-sampling filter information indicating the determined phase shift.
Abstract:
Provided are a video encoding method of adjusting a range of encoded output data to adjust a bit depth during restoring of encoded samples, and a video decoding method of substantially preventing overflow from occurring in output data in operations of a decoding process. The video decoding method includes parsing and restoring quantized transformation coefficients in units of blocks of an image from a received bitstream, restoring transformation coefficients by performing inverse quantization on the quantized transformation coefficients, and restoring samples by performing one-dimensional (1D) inverse transformation and inverse scaling on the quantized transformation coefficients. At least one from among the transformation coefficients and the samples has a predetermined bit depth or less.
Abstract:
A video decoding method includes extracting offset mergence information of a current largest coding unit (LCU), the offset mergence information indicating whether to adopt a second offset parameter as a first offset parameter of the current LCU; reconstructing the first offset parameter of the current LCU based on the offset mergence information, the first offset parameter including an offset type, an offset value, and an offset class of the current LCU; determining whether the current LCU is an edge type or a band type, based on the offset type; determining an edge direction according to the edge type or a band range according to the band type, based on the offset class; determining a difference value between reconstructed pixels and original pixels included in the offset class, based on the offset value; and adjusting pixel values of reconstructed pixels based on the difference value.
Abstract:
A method and apparatus for encoding and decoding a video are provided. The method of encoding the video includes: determining whether a unidirectional motion estimation mode and a bidirectional motion estimation mode are to be used based on a size of a current prediction unit to be encoded, performing the motion estimation and the motion compensation on the current prediction unit according to the determining of whether the unidirectional motion estimation mode and the bidirectional motion estimation mode are to be used, determining an optimum motion estimation mode of the current prediction unit based on an encoding cost of the current prediction unit obtained through the performing of the motion estimation and the motion compensation, and encoding information indicating the determined optimum motion estimation mode based on the size of the current prediction unit.
Abstract:
A video decoding method includes extracting offset mergence information of a current largest coding unit (LCU), the offset mergence information indicating whether to adopt a second offset parameter as a first offset parameter of the current LCU; reconstructing the first offset parameter of the current LCU based on the offset mergence information, the first offset parameter including an offset type, an offset value, and an offset class of the current LCU; determining whether the current LCU is an edge type or a band type, based on the offset type; determining an edge direction according to the edge type or a band range according to the band type, based on the offset class; determining a difference value between reconstructed pixels and original pixels included in the offset class, based on the offset value; and adjusting pixel values of reconstructed pixels based on the difference value.
Abstract:
Provided are a video encoding method of adjusting a range of encoded output data to adjust a bit depth during restoring of encoded samples, and a video decoding method of substantially preventing overflow from occurring in output data in operations of a decoding process. The video decoding method includes parsing and restoring quantized transformation coefficients in units of blocks of an image from a received bitstream, restoring transformation coefficients by performing inverse quantization on the quantized transformation coefficients, and restoring samples by performing one-dimensional (1D) inverse transformation and inverse scaling on the quantized transformation coefficients. At least one from among the transformation coefficients and the samples has a predetermined bit depth or less.
Abstract:
A sub-pel-unit image interpolation method using a transformation-based interpolation filter includes, selecting, based on a sub-pel-unit interpolation location in a region supported by a plurality of interpolation filters for generating at least one sub-pel-unit pixel value located between integer-pel-unit pixels, one of a symmetric interpolation filter and an asymmetric interpolation filter from among the plurality of interpolation filters; and using the selected interpolation filter to generate the at least one sub-pel-unit pixel value by interpolating the integer-pel-unit pixels.