Abstract:
Disclosed is a method and apparatus to detect an intended packet by a sliding intermediate frequency (SIF) coherent ultra low power (ULP) wireless receiver. The method includes detecting a transition from a noise period to a signal period in a pair of input sequences received, dynamically adjusting a gain of the pair of input sequences in response to the signal period being initiated, distinguishing an intended packet from packets received in preambles included in the pair of input sequences, and compensating for a carrier frequency offset of the intended packet in the signal period.
Abstract:
A method and apparatus for a collision-free carrier sense multiple access (CSMA) are provided. The method of a node associated with a beacon enabled carrier sense multiple access (CSMA)-based wireless communication network through an access point (AP) includes receiving a beacon from the AP, the beacon comprising a back-off prime number and a beacon random number, and generating a back-off interval based on the beacon random number, the back-off prime number, a mapped identification (ID) of the node, and a current time slot of a frame of the beacon. The method and apparatus provide a collision-free CSMA scheme for a beacon enabled CSMA-based wireless communication network. In the collision-free CSMA scheme, uniformly distributed back-off intervals may be generated in a distributed fashion at each node for a CSMA-based wireless communication network. The back-off intervals may be correlated among the nodes even though the nodes do not communicate with each other.
Abstract:
A method of performing synchronization in a super regenerative receiver (SRR) includes setting a quench rate of the SRR to a value of 1.5 times a chip rate of an incoming signal, acquiring an expected preamble sequence of an arbitrary sample set among a plurality of possible sample sets, acquiring an expected start frame delimiter (SFD) sequence for all of the possible sample sets to achieve frame synchronization, computing respective correlation metrics for bits of the expected SFD sequence while the expected SFD sequence is acquired for all of the possible sample sets, calculating a decision metric based on the correlation metrics in response to an SFD sequence being detected for one or more of the possible sample sets, and identifying a best sample set for demodulating the incoming signal among all of the possible sample sets based on the decision metric to achieve pulse synchronization.
Abstract:
A method of estimating concentration of a blood compound may include: removing a baseline drift from Near-Infrared (NIR) spectroscopy data to obtain drift-free spectral features; obtaining a set of global features based on the drift-free spectral features; and estimating the concentration of the blood compound by regression using the set of global features.
Abstract:
A method for obtaining blood glucose concentration using near infrared spectroscopy (NIR) data is provided. The method includes obtaining, by an independent component analysis (ICA) temporal module, orthogonal pure spectra from human NIR spectra; performing, by a processing module, one or more preprocessings and drift removal on the human NIR spectra and the orthogonal pure spectra to obtain preprocessed spectra; and obtaining, by a regression block, the blood glucose concentration from the preprocessed spectra.
Abstract:
A method and a transmitter for transmitting a pay load sequence are provided. The transmitter includes a ternary sequence mapper configured to map a binary data sequence to a ternary sequence stored in the transmitter, and a pulse shaping filter configured to generate a first signal based on the mapped ternary sequence. The ternary sequence includes elements of −1, 0, and 1.
Abstract:
A method of estimating concentration of a blood compound may include: removing a baseline drift from Near-Infrared (NIR) spectroscopy data to obtain drift-free spectral features; obtaining a set of global features based on the drift-free spectral features; and estimating the concentration of the blood compound by regression using the set of global features.
Abstract:
A method to compensate a carrier frequency offset (CFO) in a receiver is disclosed. The method includes receiving discrete time samples, obtaining a sample vector from the received discrete time samples, obtaining tentative CFO estimates based on the sample vector, selecting a CFO having a greatest compensation coefficient from the tentative CFO estimates, and compensating the CFO in the received discrete time samples.
Abstract:
A method for radio frequency (RF) pulse synchronization in a super regenerative receiver (SRR), includes receiving an input signal including an asymmetric preamble, and estimating a phase difference between the input signal and a quench signal based on the asymmetric preamble. The method further includes compensating for the phase difference.
Abstract:
A system and/or method for determining an Angle of Arrival (AoA) of a signal by a base station. The technique may include configuring different time intervals and multiple phase shifts across an antenna array of the base station. The technique may include receiving the signal from UEs at the different time intervals and the multiple phase shifts across the antenna array. The technique may include estimating phase angles of the signal received at the different time intervals and the multiple phase shifts. The technique may include determining the AoA of the signal received from the UEs based on the phase angles of the signal received at the different time intervals and the multiple phase shifts.