Abstract:
The probe includes a probe body that includes an internal empty space and is configured to be inserted into a coelom; an energy source module that is disposed in the probe body, and configured to emit an energy beam; first and second view windows that are provided at an end portion of the probe body, have different fields of view, and are configured to transmit the emitted energy beam; and a path changing unit that is disposed in the probe body, and configured to change a traveling path of the emitted energy beam to travel to one of the first view window and the second view window.
Abstract:
An aperture adjusting apparatus is provided. The aperture adjusting apparatus includes: a variable part of which an aperture size varies; an optical sensor configured to sense light incident to the variable device part and light output from the variable device part; an aperture calculator configured to calculate a size of an aperture formed in the variable part from light intensity sensed by the optical sensor; and a driving controller configured to control driving of the variable device part by receiving a calculation result fed back from the aperture calculator.
Abstract:
An optical zoom probe is provided. The optical zoom probe includes: an aperture adjuster which adjusts an aperture through which light which is transmitted by a light transmitter propagates; and a focus adjuster which focuses light that propagates through the aperture and which includes first and second liquid lenses for each of which respective curvatures are independently controlled so as to adjust a respective focal length.
Abstract:
Provided is an aperture adjusting apparatus for adjusting an aperture through which light transmits. The aperture adjusting apparatus includes: a chamber configured to have space in which fluid flows, the chamber including a lower channel, an upper channel, and a plurality of reservoir regions connecting the lower channel and the upper channel and each having a non-uniform width crossing a flow direction of a fluid to form a space in which fluid flows; a photo-interceptive first fluid and a photo-transmissive second fluid having a property that the photo-transmissive second fluid does not mix with the first fluid and that are prepared in the chamber; and a first electrode unit in which one or more electrodes to which a voltage is applied are arrayed to form an electric field in the chamber, wherein an aperture through which light transmits is adjusted by a location change of an interface between the first fluid and the second fluid according to the electric field.
Abstract:
An optical probe for irradiating light onto a subject includes an optical path control unit configured to receive light from outside the optical probe, and change a path of the light within the optical probe; an optical path length control element configured to receive the light having the changed path from the optical path control unit, and change an optical path length of the light as the optical path control unit changes the path of the light; and an optical output unit configured to receive the light having the changed optical path length from the optical path length control element, and output the light.