Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments of the present invention provide a device and a method for estimating a position between wireless apparatuses using a signal transmitted and received between wireless apparatuses in a wireless communication system. A device of a first wireless apparatus for estimating a position comprises: a transceiver for transmitting and receiving a signal to and from a second wireless apparatus; and a position estimator for estimating a position of the second wireless apparatus using a signal transmitted and received through the transceiver. The position estimator comprises a range estimator for estimating the distance between the first wireless apparatus and the second wireless apparatus on the basis of a first time difference from a time point at which a request range packet is transmitted to the second wireless apparatus to a time point at which the reception of a response range packet transmitted from the second wireless apparatus is sensed and a second time difference from a time point at which the reception of the required range packet is sensed by the second wireless apparatus to a time point at which the response range packet is transmitted.
Abstract:
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. An apparatus and method for measuring a distance between wireless devices using a first signal transmitted/received between the wireless devices in a wireless communication system are provided. The method includes: receiving the first signal for distance measurement transmitted from a first of the wireless devices; receiving a signal reflected by a reflector after being transmitted from the first of the wireless devices; and based on the received first signal and the received reflected signal, estimating a distance between the second of the wireless devices and the reflector.
Abstract:
Disclosed is a method and apparatus for searching a target cell for handover in a wireless communication system. The method includes determining a priority of at least one neighboring base station based on the reliability of a direction of a beam allocated to a mobile station, and transmitting a message informing the mobile station of the priority.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as a Long Term Evolution (LTE). A method for operating a resource in a first device in a wireless local area network (WLAN) system supporting a multi-user transmission scheme is provided. The method includes determining a number of resource allocation request messages acceptable at a timing point; and transmitting information related to the number of resource allocation request messages, wherein a resource allocation request message is acceptable if the first device is capable of allocating a resource to a second device that transmits the resource allocation request message at the timing point.
Abstract:
A method and apparatus for reducing power consumption in a mobile device of a wireless communication system when discovering a central node is provided. The method for operating of a terminal for discovering at least one central node in a wireless communication system includes: generating a probe request signal and transmitting the probe request signal to at least one central node; after transmitting the probe request signal, switching from a normal mode to a low power mode and driving the terminal in the low power mode; in response to a mode switch instruction signal being received from the central node, switching the terminal from the low power mode to the normal mode; and receiving a probe response signal to the probe request signal from the central node in the normal mode.
Abstract:
A 5th generation (5G) or a pre-5G communication system to support a higher data transmission rate than a system after a 4th generation (4G) communication system such as long-term evolution (LTE) is provided. A method of determining a carrier sense threshold by one source terminal in a wireless communication system is provided. The method includes identifying whether one or more interferer terminals and one or more destination terminals exist for one source terminal, and if the terminals exist, determining a carrier sense threshold of each of the one or more interferer terminals and the one or more destination terminals based on an interference intensity received from the one or more destination terminals and a feedback link margin.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to a method and an apparatus in a communication system. A method of a network node in the communication system comprises the steps of: measuring at least one factor value indicating channel link performance of a channel link between the network node and another network node; identifying a beamforming training scheme based on the at least one factor value; and performing beamforming training with the another network node by means of the selected beamforming training method, thereby finding an optimal beam for maintaining services through the most efficient method according to a channel state and minimizing the time consumed for beamforming training.
Abstract:
Exemplary embodiments of the present disclosure suggest an apparatus and method for rapidly establishing an initial connection and exchanging data among wireless devices in a wireless communication system. According to the exemplary embodiments of the present disclosure, a certain wireless device for transmitting data may discover neighboring wireless devices and display locations of the discovered wireless devices as information in the form of a map. Then, a user can easily select a wireless device to transmit data to based on the information which is displayed in the form of the map as described above, and transmit desired data to the selected wireless device.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for beamforming in a wireless device includes determining a beam based on a user gesture and communicating with another wireless device using the determined beam, and thus the time required to set a beam direction can be reduced and a load for beamforming can be reduced.
Abstract:
A method and apparatus for beamforming in a wireless communication system are provided. The method of supporting beamforming in a wireless communication device includes detecting a direction change of the wireless communication device while communicating with a peer device. The method of supporting beamforming in a wireless communication device also includes adjusting a beam direction for communication with the peer device based on information indicating a direction change of the wireless communication device.