Abstract:
A method and system for uplink-downlink transmission of message in a network. The method includes establishing, by a user equipment (UE), a security context for data transmission between the UE and a serving gateway in the network; generating, by the UE, in an idle mode, a data message including an encrypted data packet, the encrypted data packet being generated by encrypting a data packet to transmit to the serving gateway based on the security context; transmitting, by the UE, in the idle mode, to a base station (BS), a random access channel (RACH) message including a UE identifier (ID); receiving, by the UE, in the idle mode, from the BS, a contention resolution message including grant information for an uplink (UL) transmission; and transmitting, by the UE, in the idle mode, to the BS, the data message including the encrypted data packet.
Abstract:
A method and an apparatus are provided for determining a configuration for a radio frame. A transition from a period of inactivity to a period of activity is detected in a configured discontinuous reception (DRX) cycle. A category of at least one subframe of the radio frame that is likely to be encountered during the period of activity is determined, if a dynamic reconfiguration of time division duplex (TDD) uplink (UL)—downlink (DL) configurations is enabled. The category of the least one subframe includes one of a flexible subframe and a fixed subframe.
Abstract:
The present disclosure provides a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
The present disclosure provides, a method and apparatus of handling in-device co-existence interference in a wireless communication environment. In one embodiment, a method includes detecting in-device co-existence interference between a LTE module and an ISM module in user equipment. The method further includes identifying subframes and corresponding HARQ processes in a set of subframes allocated to the LTE module which are affected by the ISM module operation. Additionally, the method includes reserving the remaining subframes and corresponding HARQ processes in the set of subframes for the LTE module operation. Furthermore, the method includes indicating to a base station that the remaining subframes and the corresponding HARQ processes are reserved for the LTE module operation to resolve the in-device co-existence interference. Moreover, the method includes receiving scheduling pattern indicating subframes and corresponding HARQ processes reserved for the LTE operation or derived DRX parameters from the base station based on the indication.
Abstract:
A method and system to deliver updated system information to one or more victim User Equipments (UEs) in connected mode within the dominant co-channel interference region in Heterogeneous Network (HetNet) environment is disclosed. The method enables the base station of a victim cell to trigger one or more victim UEs in the region of co-channel interference to apply a new signaling procedure for acquiring a new message block to be delivered by the victim cell. The method provides an error handling procedure for system information acquisition failure by the victim UE in the dominant co-channel interference region of the victim cell in HetNet. The method improves reliability of updated system information delivery and improves probability of system information acquisition in region of dominant co-channel interference.
Abstract:
A method for reducing consumption of battery power of User Equipment (UE) during inter-frequency cell detection in a Heterogeneous Network (HetNet) is provided. The method includes receiving an indication from a serving cell operating on a first frequency layer about presence of a beacon signal transmission on the first frequency layer from a non-serving cell, an actual data transmission and reception of the non-serving cell occurs on a second frequency layer, determining whether the indication satisfies at least one triggering condition to initiate signal scanning on the first frequency layer for identifying the beacon signal transmission from the non-serving cell, scanning, when the received indication satisfies the triggering condition, the first frequency layer for identifying any beacon signal, decoding the beacon signal from the non-serving cell, and receiving assistance information from the serving cell to facilitate identification of the non-serving cell transmitting the beacon signals on the first frequency layer.
Abstract:
A method and an apparatus for handling in-device coexistence interference in a user equipment are provided. The method includes receiving a list of non-serving Long Term Evolution (LTE) frequencies from a base station, configuring the non-serving LTE frequencies so as to perform a measurement on the configured non-serving LTE frequencies, and detecting a likelihood of in-device coexistence interference between at least one of the non-serving LTE frequencies and an Industrial, Scientific and Medical (ISM) frequency when an ISM activity is ongoing on the ISM frequency.
Abstract:
A method and system for providing selective protection of data exchanged between user equipment (UE) and network is disclosed. The selective protection is applied to a packet, a bearer or an access point name for secure exchange of data between the UE and the network. The network decides to apply selective protection based on configuration of network, configuration of UE, load in the network, battery power availability of UE, type of application running on UE. Further, the UE can request for selective protection based on the type of application running on UE and the battery level availability of the UE. The selective protection is either enabled or disabled dynamically by the network. Further, various mechanisms for applying selective protection for each bearer, each packet and each Access Point Name (APN) are disclosed. Additionally, the method for identifying a secured and a non secured bearer has also been disclosed.
Abstract:
A method and an apparatus for activating and deactivating secondary cells in a carrier aggregation environment are provided. In one embodiment, a Medium Access Control (MAC) Control Element (CE) command is received from a base station for activating/deactivating a secondary cell associated with a User Equipment (UE). The secondary cell configured for the UE is activated/deactivated based on the MAC CE command. Further, a first uplink grant is received from the base station upon activation/deactivation of the secondary cell. Accordingly, quality information (e.g., channel quality information, sounding reference signal information, and the like) associated with the cell(s) is transmitted to the base station in the received first uplink grant over a physical uplink shared channel. Furthermore, a hybrid automatic repeat request entity associated with the secondary cell is reset.
Abstract:
A method and an apparatus are provided for monitoring a physical downlink control channel (PDCCH) by a user equipment (UE) in a wireless communication system. The UE receives a system information block (SIB) from a base station. The UE identifies downlink (DL) subframes indicated by a first time division duplex (TDD) uplink (UL)/DL configuration in the SIB. The UE monitors the PDCCH transmitted from the base station on at least one DL subframe included in an active time of a discontinuous reception (DRX) cycle among the DL subframes. The UE obtains information about a second TDD UL/DL configuration from the monitored PDCCH. The UE monitors the PDCCH using the second TDD UL/DL configuration. The active time includes a duration corresponding to a number of at least one consecutive DL subframe at a beginning of the DRX cycle.