Abstract:
The electric pen device includes an optical system including a lens and an image sensor configured to convert an image signal of light that has passed through the optical system to an electrical signal. The electric pen device includes a control board configured to interact with an electronic device and a communication module configured to communicate by wire or wirelessly with the electronic device, so that an image or a picture taken by a camera is confirmed and an optical zoom is controlled from the external electronic device.
Abstract:
An image sensor including a color filter isolation layer and a method of manufacturing the image sensor. The image sensor includes a plurality of color filters that transmit light of a predetermined wavelength band to a light sensing layer. The image sensor also includes an isolation layer disposed between adjacent ones of the plurality of color filters. The isolation layer is formed of a material having a lower refractive index than a refractive index of the color filters, thus totally internally reflecting light incident on the isolation layer from one of the plurality of color filters.
Abstract:
An image sensor includes a first pixel row including a plurality of first pixels configured to sense first wavelength light, the first wavelength light having a first wavelength, a second pixel row adjacent to the first pixel row, the second pixel row including a plurality of second pixels configured to sense second wavelength light and a plurality of third pixels configured to sense third wavelength light, the plurality of second pixels and the plurality of third pixels being alternately arranged, the second wavelength light having a second wavelength and the third wavelength light having a third wavelength and a plurality of first color separation elements in the plurality of second pixels, respectively, the plurality of separation elements configured to change a spectrum distribution of incident light.
Abstract:
A varifocal lens includes a first phase plate and a second phase plate which are rotatable relative to each other about an optical axis. The first phase plate includes a plurality of first phase conversion elements, the second phase plate includes a plurality of second phase conversion elements, and the plurality of first phase conversion elements and the plurality of second phase conversion elements are arranged so that light transmitted through the first phase plate and the second phase plate is focused on different positions on the optical axis depending on a relative rotational displacement between the first phase plate and the second phase plate.
Abstract:
A varifocal lens includes a first phase plate including a plurality of first phase conversion elements having different sizes from each other, and a second phase plate including a plurality of second phase conversion elements having different sizes from each other, where the first phase plate and the second phase plate face each other along an optical axis and are movable relative to each other in a direction perpendicular to the optical axis to create displacement between the first phase plate and the second phase plate, and the plurality of first phase conversion elements and the plurality of second phase conversion elements are configured so that light transmitted through the first phase plate and the second phase plate is focused on different positions on the optical axis depending on the displacement between the first phase plate and the second phase plate.
Abstract:
An image sensor includes a pixel array including a first pixel row, in which a plurality of first pixels and a plurality of second pixels are alternately arranged, and a second pixel row, in which a plurality of second pixels and a plurality of third pixels are alternately arranged; first color separation elements configured to allow light having a second wavelength band, among incident light, to pass therethrough and travel in a downward direction, and to allow a mixture of light having a first wavelength band and light having a third wavelength band, among the incident light, to pass therethrough and travel in a lateral direction; and first color filters on at least a portion of the plurality of first pixels, the first color filters being configured to transmit only the light having the first wavelength band.
Abstract:
A light-field camera includes a main lens configured to form an image of an object, a lens configured to form, on a curved surface, additional images based on the image of the object, and an image sensor configured to function as a curved image sensor and thereby sense the additional images, at least one of the lens and the image sensor including a flat element.
Abstract:
A color separation element array includes color separation elements which are two-dimensionally arranged to separate an incident light according to a wavelength such that a light of a first wavelength is directed to a first direction and a light of a second wavelength that is different from the first wavelength is directed to a second direction that is different from the first direction. Each of the color separation elements includes a first element and a second element that are sequentially arranged along a traveling direction of the incident light, and the first element and the second element of the color separation elements are symmetrically shifted with respect to a center area of the color separation element array, to be aligned to fit to the traveling direction of the incident light that is obliquely incident.
Abstract:
A color separation device changes a light path according to the wavelengths of incident light and an image sensor has improved light utilization efficiency by using the color separation device. The color separation device may include a first element having a first refractive index that varies according to wavelengths of light along a first refractive index distribution curve, and a second element having a second refractive index that varies according to wavelengths of light along a second refractive index distribution curve, the second refractive index distribution curve being different from the first refractive index distribution curve. The color separation device may be manufactured by simply joining two elements, namely, the first and second elements, together and thus may be more easily manufactured and perform more effective color separation.
Abstract:
A stacked type image sensor with improved optical characteristics, which may result from a color separation element, and an image pickup apparatus including this image sensor. The stacked type image sensor includes first and second light sensing layers arranged in a stacked manner, and color separation elements positioned between the first and second light sensing layers. Accordingly, the first light sensing layer absorbs and detects light of a first wavelength band, and the second light sensing layer detects light of second and third wavelength bands separated by the color separation elements.