Abstract:
There is provided a display apparatus with an improved viewing angle. The display apparatus includes a display panel configured to receive light from a light source module, wherein the display panel includes: a liquid crystal panel; a first polarizing plate positioned on a rear side of the liquid crystal panel and a second polarizing plate positioned on a front side of the liquid crystal panel; and an optical layer positioned on a front surface of the second polarizing plate, wherein the optical layer includes: a resin layer having a first refractive index, and including an accommodating groove in which a light adjusting portion is disposed, the resin layer further including a light refractive pattern protruding toward a rear direction of the display panel; and an adhesive layer having a second refractive index different from the first refractive index, and bonding the resin layer with the second polarizing plate.
Abstract:
A display apparatus includes a display panel receiving light from a light source. The display panel includes a liquid crystal panel, first and second polarizers respectively disposed on front and rear sides of the liquid crystal panel, and an optical layer disposed on a front surface of the second polarizer. The optical layer includes a first resin layer having light absorption portions for absorbing a portion of incident light, a second resin layer disposed on a front surface of the first resin layer, the second resin layer having a higher refractive index than the first resin layer, the second resin layer having light diffusion portions for diffusing light not absorbed by the light absorption portions.
Abstract:
The display apparatus reflects the light emitted from the light source to a display panel using a reflective member without a member such as a light guide plate. The reflective member is configured so that the light emitted from the light source can be provided uniformly and introduced uniformly to the display panel. Even if a board with the light source disposed at a side of the reflective member, the light emitted from the light source can be radiated substantially uniformly to the entire area of the display panel by the reflective surface of the reflective member.
Abstract:
A display apparatus may include a back light unit including a light source and a selective light absorption sheet configured to absorb light of a predetermined wavelength range among light emitted from the light source and an image forming unit configured to transmit or block light emitted from the back light unit to form an image. The selective light absorption sheet may include a selective light absorption film configured to absorb light of a predetermined wavelength range among light emitted from the light source, at least one light blocking film configured to absorb at least one of UV light and IR light, and at least one barrier film configured to block at least one of oxygen and moisture.
Abstract:
This is provided a display apparatus. The display apparatus a light source configured to emit a light; and a reflective diffusion lens configured to emit a light emitted from the light source to an upper direction or a lower direction with respect to a direction perpendicular to an optical axis of the light source through an incident surface, a lateral surface, and a reflective diffusion surface.
Abstract:
Provided is a display device with enhanced uniformity of brightness. The display device includes a display panel, and a backlight unit configured to supply light to the display panel, wherein the display panel includes a liquid crystal panel with first and second surfaces opposite to each other, a first polarizing plate arranged on the first surface of the liquid crystal panel, a second polarizing plate arranged on the second surface of the liquid crystal panel, a light absorbing layer arranged on the second polarizing plate to absorb a portion of the light supplied from the backlight unit, and a light absorbing material included in the light absorbing layer to absorb light of particular wavelengths.
Abstract:
A display apparatus includes: a display panel; a light source package configured to supply light; and a light guide plate configured to receive the light supplied by the light source package and guide the light to the display panel. The light source package includes: a light source configured to generate the light; a first reflector disposed around the light source; a light converter disposed between the light source and the light guide plate, the light converter being configured to convert properties of the light directed toward the light guide plate; and a second reflector protruding from the light converter toward the light source, the second reflector being configured to reflect the light generated by the light source toward the first reflector, and to reflect light reflected by the light converter toward the light guide plate.
Abstract:
Disclosed herein are a quantum dot unit having an improved structure for improving color reproducibility, a quantum dot sheet having the same, and a display device having the quantum dot unit or the quantum dot sheet. The display device includes a display panel configured to display an image, a light source provided to emit light to the display panel, a light guide plate provided to guide the light emitted from the light source to the display panel, and a quantum dot unit disposed between the light source and the light guide plate to change a wavelength of the light emitted from the light source and having ductility, wherein the quantum dot unit includes a glass fiber having a hollow portion and a quantum dot accommodated in the hollow portion.
Abstract:
Disclosed herein are a reflecting plate, a backlight unit, and a display device using the backlight unit, and the display device includes one or more light sources; a reflecting plate to which light radiated from the one or more light sources is incident and having a reflecting surface reflecting the incident light; one or more selective light absorbing parts disposed on the reflecting surface and configured to selectively absorb a portion of the incident light; and a quantum dot sheet into which at least one of light emitted without being absorbed by the selective light absorbing part and light radiated from the light source is incident.
Abstract:
A backlight unit includes a light source and a lens unit optically coupled to the light source. A surface of the lens unit facing the light source includes areas coated with a reflective material for reflecting light from the light source away from the lens, and a transmissive area for transmitting light from the light source towards ran output surface of the lens. A display device includes a display panel, a light diffuser, the backlight unit and a reflective element, the backlight unit arranged between the light diffuser and the reflective element, and the display panel positioned opposite the backlight unit with respect to the light diffuser.