摘要:
A method for manufacturing an electrode may include (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector. The porous non-woven coating layer formed on the outer surface of the electrode active material layer may be made from an inorganic fiber having excellent thermal stability. When an electrochemical device is overheated, the porous non-woven coating layer may contribute to suppression of a short circuit between a cathode and an anode and performance improvement of an electrochemical device due to uniform distribution of pores.
摘要:
Disclosed is a method for manufacturing a separator for an electrochemical device. The method contributes to formation of a separator with good bondability to electrodes and prevents inorganic particles from detaching during an assembling process of an electrochemical device.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
摘要:
A method for manufacturing a separator includes (S1) preparing a porous substrate having pores, (S2) coating at least one surface of the porous substrate with a first solvent, (S3) coating the first solvent with a slurry containing inorganic particles dispersed therein and formed by dissolving a binder polymer in a second solvent, (S4) drying the first and second solvents simultaneously to form a porous organic-inorganic composite layer on the porous substrate. Since the phenomenon that the pores of the porous substrate are closing by the binder polymer is minimized, it is possible to prevent the resistance of the separator from increasing due to the formation of the porous organic-inorganic composite layer.
摘要:
A separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer provided on at least one surface of the non-woven fabric substrate and made of a mixture of a plurality of inorganic particles and a binder polymer, wherein the non-woven fabric substrate is made of superfine fibers having an average thickness of 0.5 to 10 μm, and wherein, among the pores in the non-woven fabric substrate, pores having a wide diameter of 0.1 to 70 μm are 50% or above of the entire pores. The above separator having the porous coating layer may generate the generation of leak current without increasing a loading weight of the porous coating layer since the non-woven fabric substrate having a controlled pore side by using superfine fibers of a predetermined thickness is used.
摘要:
Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
摘要:
A method for manufacturing a separator includes (S1) preparing a porous substrate having pores, (S2) coating at least one surface of the porous substrate with a first solvent, (S3) coating the first solvent with a slurry containing inorganic particles dispersed therein and formed by dissolving a binder polymer in a second solvent, (S4) drying the first and second solvents simultaneously to form a porous organic-inorganic composite layer on the porous substrate. Since the phenomenon that the pores of the porous substrate are closing by the binder polymer is minimized, it is possible to prevent the resistance of the separator from increasing due to the formation of the porous organic-inorganic composite layer.
摘要:
Disclosed is an electrochemical device. The electrochemical device includes: (a) a composite separator including a porous substrate, a first porous coating layer coated on one surface of the porous substrate, and a second porous coating layer coated on the other surface of the porous substrate; (b) an anode disposed to face the first porous coating layer; and (c) a cathode disposed to face the second porous coating layer. The first and second porous coating layers are each independently composed of a mixture including inorganic particles and a binder polymer. The first porous coating layer is thicker than the second porous coating layer. The electrochemical device has good thermal stability and improved cycle characteristics.
摘要:
A method for manufacturing an electrode may include (S1) preparing a sol solution containing a metal alkoxide compound, and (S2) forming a porous non-woven coating layer of an inorganic fiber by electroemitting the sol solution onto an outer surface of an electrode active material layer formed on at least one surface of a current collector. The porous non-woven coating layer formed on the outer surface of the electrode active material layer may be made from an inorganic fiber having excellent thermal stability. When an electrochemical device is overheated, the porous non-woven coating layer may contribute to suppression of a short circuit between a cathode and an anode and performance improvement of an electrochemical device due to uniform distribution of pores.
摘要:
A separator includes a non-woven fabric substrate having pores, fine thermoplastic powder located inside the pores of the non-woven fabric substrate, and a porous coating layer disposed on at least one surface of the non-woven fabric substrate. The fine thermoplastic powder has an average diameter smaller than that of the pores and a melting point lower than the melting or decomposition point of the non-woven fabric substrate. The porous coating layer includes a mixture of inorganic particles and a binder polymer whose melting point is higher than the melting or decomposition point of the fine thermoplastic powder. In the porous coating layer, the inorganic particles are fixedly connected to each other by the binder polymer and the pores are formed by interstitial volumes between the inorganic particles. Previous filling of the large pores of the non-woven fabric substrate with the fine thermoplastic powder makes the porous coating layer uniform.