摘要:
An adaptive real time thermal processing system is presented that includes a multivariable controller. The method includes creating a dynamic model of the MLD processing system and incorporating virtual sensors in the dynamic model. The method includes using process recipes comprising intelligent set points, dynamic models, and/or virtual sensors.
摘要:
A method of monitoring a processing system in real-time using low-pressure based modeling techniques that include processing one or more of wafers in a processing chamber, calculating dynamic estimation errors for the precursor and/or purging process, and determining if the dynamic estimation errors can be associated with pre-existing BIST rules for the process. When the dynamic estimation error cannot be associated with a pre-existing BIST rule, the method includes either modifying the BIST table by creating a new BIST rule for the process, or stopping the process when a new BIST rule cannot be created.
摘要:
A method of monitoring a processing system in real-time using low-pressure based modeling techniques that include processing one or more of wafers in a processing chamber; determining a measured dynamic process response for a rate of change for a process parameter; executing a real-time dynamic model to generate a predicted dynamic process response; determining a dynamic estimation error using a difference between the predicted dynamic process response and the expected process response; and comparing the dynamic estimation error to operational limits.
摘要:
A method of monitoring a processing system in real-time using low-pressure based modeling techniques that include processing one or more of wafers in a processing chamber, calculating dynamic estimation errors for the precursor and/or purging process, and determining if the dynamic estimation errors can be associated with pre-existing BIST rules for the process. When the dynamic estimation error cannot be associated with a pre-existing BIST rule, the method includes either modifying the BIST table by creating a new BIST rule for the process, or stopping the process when a new BIST rule cannot be created.
摘要:
A method of determining wafer curvature in real-time is presented. The method includes establishing a first temperature profile for a hotplate surface, where the hotplate surface is divided into a plurality of temperature control zones. The method further includes positioning a wafer at a first height above the hotplate surface and determining a second temperature profile for the hotplate surface. The wafer curvature is then determined by using the second temperature profile. Also, a dynamic model of a processing system is presented and wafer curvature can be incorporated into the dynamic model.
摘要:
A method of creating and/or modifying a built-in self test (BIST) table for monitoring a thermal processing system in real-time that includes positioning a plurality of wafers in a processing chamber in the thermal processing system; executing a real-time dynamic model to generate a predicted dynamic process response; creating a measured dynamic process response; determining a dynamic estimation error; determining if the determined dynamic estimation error can be associated with a pre-existing BIST rule in the BIST table; creating a new BIST rule when the dynamic estimation error cannot be associated with any pre-existing BIST rule in the BIST table; and stopping the process when a new BIST rule cannot be created.
摘要:
A method of monitoring a processing system in real-time using low-pressure based modeling techniques that include processing one or more of wafers in a processing chamber; determining a measured dynamic process response for a rate of change for a process parameter; executing a real-time dynamic model to generate a predicted dynamic process response; determining a dynamic estimation error using a difference between the predicted dynamic process response and the expected process response; and comparing the dynamic estimation error to operational limits.
摘要:
A method of creating and/or modifying a built-in self test (BIST) table for monitoring a thermal processing system in real-time that includes positioning a plurality of wafers in a processing chamber in the thermal processing system; executing a real-time dynamic model to generate a predicted dynamic process response; creating a measured dynamic process response; determining a dynamic estimation error; determining if the determined dynamic estimation error can be associated with a pre-existing BIST rule in the BIST table; creating a new BIST rule when the dynamic estimation error cannot be associated with any pre-existing BIST rule in the BIST table; and stopping the process when a new BIST rule cannot be created.
摘要:
A method of monitoring a thermal processing system in real-time using a built-in self test (BIST) table that includes positioning a plurality of wafers in a processing chamber in the thermal processing system; executing a real-time dynamic model to generate a predicted dynamic process response for the processing chamber during the processing time; creating a first measured dynamic process response; determining a dynamic estimation error using a difference between the predicted dynamic process response and the measured dynamic process response; and comparing the dynamic estimation error to operational thresholds established by one or more rules in the BIST table.
摘要:
Methods for adaptive real time control of a system for thermal processing substrates, such as semiconductor wafers and display panels. Generally, the method includes creating a dynamic model of the thermal processing system, incorporating wafer bow in the dynamic model, coupling a diffusion-amplification model into the dynamic thermal model, creating a multivariable controller, parameterizing the nominal setpoints, creating a process sensitivity matrix, creating intelligent setpoints using an efficient optimization method and process data, and establishing recipes that select appropriate models and setpoints during run-time.