Abstract:
An ultra-high-efficiency switching power supply system integrating, into a single package, power conversion switches for multiple power supplies, an input power switching block, an output power switching block, control logic for controlling the power conversion switches and control input/output ports. This integrated multiple power supply package is called a Power Bridge and preferably implements the integrated components as one or more integrated circuit chips housed in the package housing. The Power Bridge is a bridge between the microprocessor of a portable computer and its internal and external power sources. The power supply system facilitates board design because the ultra-high-efficiency power module generally requires less space and generates less heat than conventional power supply circuitry. The power supply module improves power management because of improved communications connections between the power supply module control circuitry and other components, such as busses, other bridge modules and embedded controllers.
Abstract:
A battery box sealable against moisture and oxygen ingress and liquid electrolyte egress. The battery box includes a first end, a second end opposite the first end, and sidewalls extending between the first and second ends to define a chamber for housing a number of rechargeable lithium battery cells. The first end and the sidewalls are metallic and have a substantially moisture and oxygen gas impervious joint between them. The second end is of a metal plastic laminate joinable to the sidewalls by a joining medium to form a substantially moisture and oxygen impervious joint therebetween. The second end has electrical connectors extending through it which enable substantially moisture and gas impervious connection to be made between current collectors of the lithium battery cells and the outside of the battery box.
Abstract:
A lithium battery having a plurality of interconnected pouch cells encased in a first cover which is substantially impermeable to moisture ingress and electrolyte egress. The first cover is surrounded by a rigid outer cover which is sealed in a substantially moisture impervious manner. Positive, negative and monitoring leads extend in a sealed manner through the first cover and are connected to a charge monitoring and controlling circuit board. The circuit board may be located within or outside of the outer cover. Positive and negative terminals on and outside of the outer cover are respectively connected to positive and negative leads which extend through the outer cover in a substantially fluid sealed manner.
Abstract:
Lithium electrochemical cells and batteries are described having electron conductive additives in the form of a mixture of carbon fibres and fine carbon particles. The electron conductive additives are provided in a polymeric fluoride coating between the electrode and the current collector. A mixture of carbon fibres and fine carbon can also be admixed with the cathode-active component in the cathode.
Abstract:
A composite electrode for a rechargeable lithium battery is described. The composite electrode has a metallic current collector in contact with an electrically conducting organic polymer laminate made of a blended and annealed polymeric mixture containing fine carbon particles, and coated with an electrode-active substance bearing layer. The conducting polymer is capable of reversible resistivity changes of several orders of magnitude in only a portion of the laminate, thereby reducing locally excessive current flow and over-heating in the rechargeable lithium battery.
Abstract:
An improved lithium ion battery is described wherein corrosion of the current collector in contact with the electrode face is greatly reduced. In one embodiment an electrically conductive, ceramic layer is inserted between the current collector and the corresponding major face of the lithium ion battery. In another embodiment the metallic current collector plate is replaced by an electrically conductive laminated organic polymer having electrically conductive particles dispersed therein.
Abstract:
The non-aqueous thin film rechargeable lithium battery described has a negative electrode comprising a polymer laminate having embedded therein carbon, and a layer of fine carbon agglomerated with a lithium compound containing organic binder carried by the polymer laminate. The positive electrode of the rechargeable lithium battery contains a layer of fine particles of vanadium oxide, manganese oxide, cobalt oxide, nickel oxide or silver vanadate, agglomerated with a lithium compound containing organic binder and the layer is supported on another polymer laminate embedding carbon. In one embodiment the lithium battery has a solid polymer electrolyte containing a lithium compound capable of releasing lithium ions, located between the positive and negative electrodes. In another embodiment a microporous polymer laminate separator which has been impregnated with an organic liquid electrolyte containing a lithium compound, is placed between the polymer laminate negative electrode and the polymer laminate positive electrode. In both embodiments the electrodes are rendered adherent to the mobile lithium ion carrying electrolyte with a coating of an organic adhesive containing a lithium compound in a concentration lower than in the electrolyte, disposed between them.
Abstract:
An improved ceramic heater to be incorporated in a glow plug is described. The heater is made up of a ceramic core enclosed by two layers sintered together to form a unitary ceramic heater. All three component elements of the heater are composed of silicon nitride containing different concentrations of an electrically conductive ceramic substance, such as titanium nitride, titanium carbonitride or molybdenum disilicide. Each component additionally contains low amounts of sintering additives. The core of the heater has the highest concentration (46-75 vol. %) of the electrically conductive substance. The core enclosed in a ceramic layer which is an electrical insulator and is composed of silicon nitride, less than 28 vol. % of the electrically conductive ceramic substance and sintering additives. An outer layer over the core contains the electrically conductive ceramic substance in a concentration (33-50 vol. %) which is in between that in the core and that in the insulator layer. One end of the core is integrally connected to the outer layer over it. The ceramic heater is fitted into a glow plug housing. The core and the outer layer properly joined to appropriate connectors in the glow plug housing form an electrical circuit when connected to an electrical power source.
Abstract:
The composite electrolyte for use in a thin plate rechargeable lithium battery comprises a porous or micro-porous inert, multi-layered polymer separator laminate which carries an adherent second polymer coating containing a dissociable lithium compound, and the multi-layered separator having adherent solid second polymer layer, is impregnated with an organic liquid containing another lithium salt. The porous or micro-porous separator laminate is made of multiple polymer layers, at least one of the member layers having melting temperature at least 20-C below the melting temperature of the other polymer member layers. The composite porous electrolyte is inserted between the electrodes of a rechargeable lithium battery. In another embodiment the porous polymer separator sheet has an adherent, dissociable lithium compound containing, solid second polymer layer on each of its major faces.
Abstract:
An electrical energy storage device for storing electrical energy and supplying the electrical energy to a driving motor at different power levels is disclosed. The electrical storage device has an energy battery connected to a power battery. The energy battery has a higher energy density than the power battery. However, the power battery can provide electrical power to the electrical motor at different power rates, thereby ensuring that the motor has sufficient power and current when needed. The power battery can be recharged by the energy storage battery. In this way, the power battery temporarily stores electrical energy received from the energy battery and both batteries can provide electrical energy at the different power rates as required by the motor. The energy storage device can be releasably connected to an external power source in order to recharge both batteries. Both batteries can be recharged independently to optimize the recharging and lifetime characteristics of the batteries.