Abstract:
Disclosed is a supporting structure for concurrently supporting a plurality of containers for substances for medical, pharmaceutical or cosmetic applications, comprising a flat, rectangular-shaped carrier having a plurality of apertures or receptacles and at least one supporting member, which is releasably coupled to the carrier, wherein the respective supporting member is configured to support a plurality of containers to said carrier by a positive-fit.According to the invention the positive-fit is formed by coupling the respective supporting member with the carrier such that the containers supported on the container extend into the apertures or receptacles of the carrier.By means of the supporting members tolerances, in particular with respect to the outer radius or the outer contour of the containers and to their length, can be compensated for in a simple manner. Because the containers extend through the apertures of the carrier, the bottoms of the containers are freely accessible from the underside of the carrier even if these are supported on the carrier. This offers significant advantages when processing or further processing the containers. Since the supporting means are clipped into the carrier, these are retained to the carrier in axial direction and thus are supported very reliably on the carrier.
Abstract:
A supporting structure for concurrently supporting a plurality of containers having a predetermined length for medical, pharmaceutical or cosmetic applications comprises a carrier having a plurality of supporting means for supporting the containers on the carrier, optionally, at least in a first orientation (e.g. upright) or in a second orientation (upside-down or also upright).According to the invention the carrier is matched to the lengths of the containers such that the upper ends of the containers are arranged in the first position at the same distance to the carrier as the lower ends of the containers in the second position and that the upper ends and/or lower ends of the containers are accessible for a further processing of the containers while they are supported on the carrier.Thus, there is no need to adjust the heights of processing stations in which the containers are treated or processed further, regardless of whether the containers are supported on the carrier in the first position or in the second position, because the upper ends and lower ends of the containers are disposed on the same height level in both positions (orientations) of the containers. According to the invention this facilitates the treatment and processing of containers considerably because the effort in terms of adjustment, control and automation can be considerably simplified.
Abstract:
A process and apparatus are provided for treating or processing containers that are used for storing substances for medical, pharmaceutical or cosmetic applications or contain the same. During the process, cylindrical containers open at least at one end are automatically led past or pass through processing stations for treatment or processing by means of a conveying device, while the containers are jointly held by a carrier in a regular two-dimensional arrangement. The carrier includes a plurality of openings or receptacles that determine the regular arrangement. The treatment or processing of the containers is performed on or in at least one of the processing stations while the containers are supported by the carrier.
Abstract:
A method for sterile packaging of a plurality of containers is provided that includes: providing a carrier in which a plurality of receptacles are formed, the receptacles being formed by a closed bottom and a circumferential side wall, the upper ends of the receptacles, which are opposite to the respective bottom, are open and circumferential connecting webs are provided at the upper ends; placing the containers in the receptacles; providing a gas-impermeable protective foil; bonding the protective foil along the connecting webs with the upper surface of the carrier to package all the receptacles with the containers accommodated individually therein; and sterilizing the receptacles with the containers accommodated therein and/or the inner volumes of the containers by a gas flowing into the receptacles and/or into the inner volumes of the containers through at least one gas-permeable portion.
Abstract:
In a process and apparatus for treating or processing containers (2) that are used for storing substances for medical, pharmaceutical or cosmetic applications or contain the same, cylindrical containers open at least at one end are automatically led past or pass through processing stations for treatment or processing by means of a conveying device, while said containers are jointly held by a carrier (25; 134) in a regular two-dimensional arrangement. The carrier comprises a plurality of openings or receptacles (32; 39; 87; 120), which determine the regular arrangement.According to the invention, the treatment or processing of the containers is performed on or in at least one of the processing stations while the containers are supported by the carrier. This opens up new possibilities for treating or processing the containers, for example when crimping metal lids or during freeze-drying.
Abstract:
A process and apparatus are provided for treating or processing containers that are used for storing substances for medical, pharmaceutical or cosmetic applications or contain the same. During the process, cylindrical containers open at least at one end are automatically led past or pass through processing stations for treatment or processing by means of a conveying device, while the containers are jointly held by a carrier in a regular two-dimensional arrangement. The carrier includes a plurality of openings or receptacles that determine the regular arrangement. The treatment or processing of the containers is performed on or in at least one of the processing stations while the containers are supported by the carrier.
Abstract:
The production of optoelectronic components, optical components being mounted in the composite wafer. Provided to this end is a method for producing optoelectronic components, in particular image signal acquiring or image signal outputting components, in the case of which optical components are respectively provided, picked up and mounted on a wafer, the optical components preferably respectively being positioned individually or in groups relative to the position of assigned optoelectronic or optical components of the wafer or of a wafer to be connected thereto.
Abstract:
A base body for a light conversion device and/or an illumination device is configured as a heat sink. The base body has a front side which is configured to mount a light conversion element on the base body. The base body includes an indicator for positioning/alignment of a light conversion element on the base body, and/or an indicator for positioning/alignment of the base body relative to a component for retention of the base body.
Abstract:
A light conversion device is provided that includes a main body and a light conversion arrangement. The main body includes heatsink and is on a back side of the light conversion arrangement. The light conversion arrangement has a front side with light conversion elements separated from one another at least regionally by a trench. The light conversion elements, when irradiated with primary light on the front side, are configured to emit secondary light having a different wavelength from the front side.
Abstract:
Light conversion devices and lighting devices having such conversion devices are provided. The conversion device includes a light conversion element having a front side and a coating arrangement. The front side is configured to be illuminated with primary light and to emit secondary light having another wavelength or a wavelength range. The coating arrangement is on the front side and has at least one coating layer.