Abstract:
A wireless power feed system with high transfer efficiency of electric power is disclosed. The wireless power feed system includes a power feeding device and a power receiving device, wherein the power feeding device includes a first electromagnetic coupling coil that is connected to an AC power source via a directional coupler; a first resonant coil; a switch connected to the opposite ends of the first resonant coil; a control circuit which conducts switching on/off of the switch based on a parameter of an amplitude of a reflective wave detected by the directional coupler; and an analog-digital converter provided between the first electromagnetic coupling coil and the control circuit; and the power receiving device includes a second resonant coil; and a second electromagnetic coupling coil, and wherein the first electromagnetic coupling coil is provided between the first resonant coil and the second resonant coil.
Abstract:
To reduce the area of a memory cell having a backup function. A storage device includes a cell array, and a row circuit and a column circuit that drive the cell array. The cell array includes a first power supply line, a second power supply line, a word line, a pair of bit lines, a memory cell, and a backup circuit. The cell array is located in a power domain where power gating can be performed. In the power gating sequence of the cell array, data in the memory cell is backed up to the backup circuit. The backup circuit is stacked over a region where the memory cell is formed. A plurality of wiring layers are provided between the backup circuit and the memory cell. The first power supply line, the second power supply line, the word line, and the pair of bit lines are located in different wiring layers.
Abstract:
To reduce the area of a memory cell having a backup function. A storage device includes a cell array, and a row circuit and a column circuit that drive the cell array. The cell array includes a first power supply line, a second power supply line, a word line, a pair of bit lines, a memory cell, and a backup circuit. The cell array is located in a power domain where power gating can be performed. In the power gating sequence of the cell array, data in the memory cell is backed up to the backup circuit. The backup circuit is stacked over a region where the memory cell is formed. A plurality of wiring layers are provided between the backup circuit and the memory cell. The first power supply line, the second power supply line, the word line, and the pair of bit lines are located in different wiring layers.
Abstract:
A wireless power feed system with high transfer efficiency of electric power is disclosed. The wireless power feed system includes a power feeding device and a power receiving device, wherein the power feeding device includes a first electromagnetic coupling coil that is connected to an AC power source via a directional coupler; a first resonant coil; a switch connected to the opposite ends of the first resonant coil; a control circuit which conducts switching on/off of the switch based on a parameter of an amplitude of a reflective wave detected by the directional coupler; and an analog-digital converter provided between the first electromagnetic coupling coil and the control circuit; and the power receiving device includes a second resonant coil; and a second electromagnetic coupling coil, and wherein the first electromagnetic coupling coil is provided between the first resonant coil and the second resonant coil.
Abstract:
A resonant power feeding system that can provide high power transmission efficiency between a power feeding device and a power reception device without dynamically controlling the oscillation frequency in accordance with the distance between the power feeding device and the power reception device. High power transmission efficiency between the power feeding device and the power reception device is obtained by addition of a structure for adjusting the matching condition to both the power reception device and the power feeding device. Specifically, a transmission-reception circuit and a matching circuit are provided in both the power reception device and the power feeding device, and wireless signals for adjusting the matching circuit are transmitted and received through a resonant coil. Thus, the power feeding device can efficiently supply power to the power reception device without adjusting the oscillation frequency.
Abstract:
An object is to provide a power feeding device, a power feeding system, and a power feeding method which are more convenient for a power feeding user at the power receiving end. The power feeding device includes a means of controlling a frequency of a power signal transmitted to a power receiver, based on a proportion of signals, among power signals output to an antenna circuit, that return from the power receiver to the antenna circuit without feeding power to the power receiver.
Abstract:
A wireless power feed system with high transfer efficiency of electric power is disclosed. The wireless power feed system includes a power feeding device and a power receiving device, wherein the power feeding device includes a first electromagnetic coupling coil that is connected to an AC power source via a directional coupler; a first resonant coil; a switch connected to the opposite ends of the first resonant coil; a control circuit which conducts switching on/off of the switch based on a parameter of an amplitude of a reflective wave detected by the directional coupler; and an analog-digital converter provided between the first electromagnetic coupling coil and the control circuit; and the power receiving device includes a second resonant coil; and a second electromagnetic coupling coil, and wherein the first electromagnetic coupling coil is provided between the first resonant coil and the second resonant coil.