Abstract:
A pixel structure includes a plurality of red sub-pixels, white sub-pixels, blue sub-pixels and green sub-pixels, which are arranged to form a plurality of first sub-pixel cells and second sub-pixel cells. The first and second sub-pixel cells may be arranged to form a plurality of pixel cells. The pixel cells may be arranged in the vertical direction repeatedly to form a plurality of pixel array cells. The pixel array cells may be arranged in the horizontal direction repeatedly to form a plurality of pixel arrays. The pixel structure further includes a supplement pixel array disposed in the pixel arrays according to a preset mode and configured to supplement polarity inversion in the pixel structure. The sub-pixels with a same color in a same row in a same signal frame may not have a same polarity, thereby reducing flicker and horizontal crosstalk of images and improving the image display quality.
Abstract:
A TFT array substrate, an electronic paper display panel and method for manufacturing the same are disclosed. The electronic paper display panel includes: a first transparent substrate, and an array of storage capacitors located on an inner side of the first transparent substrate. Each of the storage capacitors includes a common electrode located on the first transparent substrate, a transparent capacitor medium layer located on the common electrode, and a pixel electrode (44) located on the transparent capacitor medium layer. The display panel also includes an electronic paper film located on the TFT array substrate, a transparent electrode located on the electronic paper film, and a second transparent substrate located on the transparent electrode. A double-sided display may be realized by the electronic paper display panel.
Abstract:
An array substrate, a display panel, and a fabrication method of the array substrate are provided. The array substrate comprises a first thin film transistor including a metal oxide thin film transistor, and a second thin film transistor including an amorphous silicon thin film transistor. The first thin film transistor and the second thin film transistor are disposed above a substrate. The first thin film transistor is located in a display region of the array substrate, and the second thin film transistor is located in a peripheral circuit region of the array substrate.
Abstract:
A display panel and a display device, where, the display panel includes a trigger signal controller, and the trigger signal controller is configured to convert N primary trigger signals generated by a first driving unit into 2N secondary trigger signals according to a display control signal generated by a second driving unit, and sequentially outputting the 2N secondary trigger signals to 2N gate controlling circuits, each of the 2N gate controlling circuits is configured to drive a group of pixels in a display region, where, rows of pixels respectively from different groups of pixels are alternately arranged, the secondary trigger signals are configured to control gate controlling circuits to simultaneously drive two paired groups of pixels under a first display mode, and alternately drive two paired groups of pixels under a second display mode.
Abstract:
A touch display panel includes a color film (CF) substrate and a TFT substrate disposed opposite to each other, a liquid crystal layer disposed between the CF substrate and the TFT substrate. A common electrode having a comb-shaped structure and/or a pixel electrode having a comb-shaped structure are disposed on the TFT substrate close to the liquid crystal layer. The touch display panel further includes a touch layer disposed on the CF substrate close to the liquid crystal layer and having a driving line and a detecting line insulated from each other. The driving line and/or the detecting line have a comb-shaped structure that is at least partially misaligned with respect to the comb-shaped structure of the common electrode and/or the comb-shaped structure of the pixel electrode.
Abstract:
A display panel and a display device are disclosed. Each of pixels in the display panel includes a pixel area; a switch element located near an intersection of a data line and a scan line; a pixel electrode electrically connected to the switch element; and a common electrode located on the first substrate. The common electrode comprises first common electrodes superposing data lines or scan lines and having the same first width; and second common electrodes overlapping with respective pixel areas and having the same second width, the first width is the same as the second width. Alternatively, the common electrode comprises first slits, which have the same first slit width, located above data lines and scan lines, and second slits, which have the same second slit width and are located in respective pixel areas. The first slit width is the same as the second slit width.
Abstract:
A touch panel and a touch screen display device are provided. The touch panel includes: a base plate including a display area and a border area; and a capacitive touch structure and an electromagnetic touch structure that are provided on a same side of the base plate; where the electromagnetic touch structure includes multiple first coils each extending in a first direction and multiple second coils each extending in a second direction; every two adjacent coils of the multiple first coils partly overlap each other; every two adjacent coils of the multiple second coils partly overlap each other; and the first direction is perpendicular to the second direction. The touch panel includes a capacitive touch structure for capacitive touch detection and an electromagnetic touch structure for electromagnetic touch detection, and thus may achieve both capacitive touch detection and electromagnetic touch detection.
Abstract:
A liquid crystal display device includes multiple data lines and multiple scan lines insulatedly intersecting each other. Each of the pixel units includes a common electrode and a pixel electrode insulated from each other by an insulating layer, an in-plane electric field is formed by the common electrode and the pixel electrode The common electrodes are connected together to form a common electrode layer, which comprises multiple touch electrodes and touch signal wires. Each of the touch signal wires is electrically connected with a corresponding touch electrode, first slits are arranged in parallel to the data lines, each of the first slits is disposed between two adjacent touch electrodes or between a touch electrode and an adjacent touch signal wire, except at a junction between the touch signal wire and the touch electrode. A first slit overlaps with a pixel electrode within a pixel unit.
Abstract:
A TFT array substrate, an electronic paper display panel and method for manufacturing the same are disclosed. The electronic paper display panel includes: a first transparent substrate, and an array of storage capacitors located on an inner side of the first transparent substrate. Each of the storage capacitors includes a common electrode located on the first transparent substrate, a transparent capacitor medium layer located on the common electrode, and a pixel electrode (44) located on the transparent capacitor medium layer. The display panel also includes an electronic paper film located on the TFT array substrate, a transparent electrode located on the electronic paper film, and a second transparent substrate located on the transparent electrode. A double-sided display may be realized by the electronic paper display panel.
Abstract:
A liquid crystal display device includes multiple data lines and multiple scan lines insulatedly intersecting each other. Each of the pixel units includes a common electrode and a pixel electrode insulated from each other by an insulating layer, an in-plane electric field is formed by the common electrode and the pixel electrode The common electrodes are connected together to form a common electrode layer, which comprises multiple touch electrodes and touch signal wires. Each of the touch signal wires is electrically connected with a corresponding touch electrode, first slits are arranged in parallel to the data lines, each of the first slits is disposed between two adjacent touch electrodes or between a touch electrode and an adjacent touch signal wire, except at a junction between the touch signal wire and the touch electrode. A first slit overlaps with a pixel electrode within a pixel unit.